In mathematical logic, formation rules are rules for describing which strings of symbols formed from the alphabet of a formal language are syntactically valid within the language. These rules only address the location and manipulation of the strings of the language. It does not describe anything else about a language, such as its semantics (i.e. what the strings mean). (See also formal grammar).
Formal language
A formal language is an organized set of symbols the essential feature being that it can be precisely defined in terms of just the shapes and locations of those symbols. Such a language can be defined, then, without any reference to any meanings of any of its expressions; it can exist before any interpretation is assigned to it—that is, before it has any meaning. A formal grammar determines which symbols and sets of symbols are formulas in a formal language.
Formal system
A formal system (also called a logical calculus, or a logical system) consists of a formal language together with a deductive apparatus (also called a deductive system). The deductive apparatus may consist of a set of transformation rules (also called inference rules) or a set of axioms, or have both. A formal system is used to derive one expression from one or more other expressions. Propositional and predicate calculi are examples of formal systems.
The formation rules of a propositional calculus may, for instance, take a form such that;
if we take Φ to be a propositional formula we can also take Φ to be a formula;
if we take Φ and Ψ to be a propositional formulas we can also take (Φ Ψ), (Φ Ψ), (Φ Ψ) and (Φ Ψ) to also be formulas.
A predicate calculus will usually include all the same rules as a propositional calculus, with the addition of quantifiers such that if we take Φ to be a formula of propositional logic and α as a variable then we can take (α)Φ and (α)Φ each to be formulas of our predicate calculus.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A logical symbol is a fundamental concept in logic, tokens of which may be marks or a configuration of marks which form a particular pattern. Although the term "symbol" in common use refers at some times to the idea being symbolized, and at other times to the marks on a piece of paper or chalkboard which are being used to express that idea; in the formal languages studied in mathematics and logic, the term "symbol" refers to the idea, and the marks are considered to be a token instance of the symbol.
In logic, syntax is anything having to do with formal languages or formal systems without regard to any interpretation or meaning given to them. Syntax is concerned with the rules used for constructing, or transforming the symbols and words of a language, as contrasted with the semantics of a language which is concerned with its meaning. The symbols, formulas, systems, theorems, proofs, and interpretations expressed in formal languages are syntactic entities whose properties may be studied without regard to any meaning they may be given, and, in fact, need not be given any.
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier in the first order formula expresses that everything in the domain satisfies the property denoted by . On the other hand, the existential quantifier in the formula expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula.