In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones.
A specific implementation with termination criteria for a given iterative method like gradient descent, hill climbing, Newton's method, or quasi-Newton methods like BFGS, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common.
In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the order of millions), where direct methods would be prohibitively expensive (and in some cases impossible) even with the best available computing power.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x1 in the basin of attraction of x, and let xn+1 = f(xn) for n ≥ 1, and the sequence {xn}n ≥ 1 will converge to the solution x. Here xn is the nth approximation or iteration of x and xn+1 is the next or n + 1 iteration of x. Alternately, superscripts in parentheses are often used in numerical methods, so as not to interfere with subscripts with other meanings. (For example, x(n+1) = f(x(n)).) If the function f is continuously differentiable, a sufficient condition for convergence is that the spectral radius of the derivative is strictly bounded by one in a neighborhood of the fixed point.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
Springer2024
,
Diffusion-based generative methods have proven effective in modeling trajectories with offline datasets. However, they often face computational challenges and can falter in generalization, especially in capturing temporal abstractions for long- horizon tas ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...