This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (6)
Please note that this is not a complete list of this person’s publications. It includes only semantically relevant works. For a full list, please refer to Infoscience.
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
Autoregressive (AR) Large Language Models (LLMs) have demonstrated significant success across numerous tasks. However, the AR modeling paradigm presents certain limitations; for instance, contemporary autoregressive LLMs are trained to generate one token a ...
State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their ...
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting n ...