Waste hierarchy is a tool used in the evaluation of processes that protect the environment alongside resource and energy consumption from most favourable to least favourable actions. The hierarchy establishes preferred program priorities based on sustainability. To be sustainable, waste management cannot be solved only with technical end-of-pipe solutions and an integrated approach is necessary.
The waste management hierarchy indicates an order of preference for action to reduce and manage waste, and is usually presented diagrammatically in the form of a pyramid. The hierarchy captures the progression of a material or product through successive stages of waste management, and represents the latter part of the life-cycle for each product.
The aim of the waste hierarchy is to extract the maximum practical benefits from products and to generate the minimum amount of waste. The proper application of the waste hierarchy can have several benefits. It can help prevent emissions of greenhouse gases, reduce pollutants, save energy, conserve resources, create jobs and stimulate the development of green technologies.
All products and services have environmental impacts, from the extraction of raw materials for production to manufacture, distribution, use and disposal. Following the waste hierarchy will generally lead to the most resource-efficient and environmentally sound choice but in some cases refining decisions within the hierarchy or departing from it can lead to better environmental outcomes.
Life cycle thinking and assessment can be used to support decision-making in the area of waste management and to identify the best environmental options. It can help policy makers understand the benefits and trade-offs they have to face when making decisions on waste management strategies. Life-cycle assessment provides an approach to ensure that the best outcome for the environment can be identified and put in place. It involves looking at all stages of a product's life to find where improvements can be made to reduce environmental impacts and improve the use or reuse of resources.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les systèmes eaux et déchets en Suisse: du traitement end-of-pipe à la fermeture des cycles. Principes de l'adduction, de l'évacuation et du traitement des eaux. Bases du dimensionnement des ouvrages,
Ce cours donne aux étudiant-e-s les connaissances de base nécessaires pour comprendre les dimensions juridiques de leur activité professionnelle concernant l'aménagement du territoire et la protection
This course provides the bases to understand material and energy production and consumption processes. Students learn how to develop a material flow analysis and apply it to cases of resource manageme
Waste minimisation is a set of processes and practices intended to reduce the amount of waste produced. By reducing or eliminating the generation of harmful and persistent wastes, waste minimisation supports efforts to promote a more sustainable society. Waste minimisation involves redesigning products and processes and/or changing societal patterns of consumption and production. The most environmentally resourceful, economically efficient, and cost effective way to manage waste often is to not have to address the problem in the first place.
Municipal solid waste (MSW), commonly known as trash or garbage in the United States and rubbish in Britain, is a waste type consisting of everyday items that are discarded by the public. "Garbage" can also refer specifically to food waste, as in a garbage disposal; the two are sometimes collected separately. In the European Union, the semantic definition is 'mixed municipal waste,' given waste code 20 03 01 in the European Waste Catalog.
Zero waste is a set of principles focused on waste prevention that encourages redesigning resource life cycles so that all products are repurposed (i.e. “up-cycled”) and/or reused. The goal of the movement is to avoid sending trash to landfills, incinerators, oceans, or any other part of the environment. Currently 9% of global plastic is recycled. In a zero waste system, all materials are reused until the optimum level of consumption is reached. Zero waste refers to waste prevention as opposed to end-of-pipe waste management.
Explores the concept of Process Intensification, covering methodologies and industrial applications for more sustainable and efficient chemical processes.
Delves into sustainability strategies, the circular economy, climate change impact, and challenges, emphasizing the importance of a circular industrial sector.
Edible robots and robotic food — edible systems that perceive, process and act upon stimulation — could open a new range of opportunities in health care, environmental management and the promotion of healthier eating habits. For example, they could enable ...
2024
, ,
The study explores an original idea that responds to the urgent need to reduce the detrimental environmental impacts of load-bearing floor construction in new buildings by reusing saw-cut reinforced concrete (RC) pieces salvaged from soon-to-be demolished ...
This paper presents a geometry-driven approach to form-finding with reused stock elements. Our proposed workflow uses a K-mean algorithm to cluster stock elements and incorporate their geometrical values early in the form-finding process. A feedback loop i ...