In matrix theory, the Perron–Frobenius theorem, proved by and , asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory (ergodicity of Markov chains); to the theory of dynamical systems (subshifts of finite type); to economics (Okishio's theorem, Hawkins–Simon condition); to demography (Leslie population age distribution model); to social networks (DeGroot learning process); to Internet search engines (PageRank); and even to ranking of football teams. The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is Edmund Landau. Let positive and non-negative respectively describe matrices with exclusively positive real numbers as elements and matrices with exclusively non-negative real numbers as elements. The eigenvalues of a real square matrix A are complex numbers that make up the spectrum of the matrix. The exponential growth rate of the matrix powers Ak as k → ∞ is controlled by the eigenvalue of A with the largest absolute value (modulus). The Perron–Frobenius theorem describes the properties of the leading eigenvalue and of the corresponding eigenvectors when A is a non-negative real square matrix. Early results were due to and concerned positive matrices. Later, found their extension to certain classes of non-negative matrices. Let be an positive matrix: for . Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r , |λ| < r. Thus, the spectral radius is equal to r. If the matrix coefficients are algebraic, this implies that the eigenvalue is a Perron number.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.