An electric vehicle battery (EVB, also known as a traction battery) is a rechargeable battery used to power the electric motors of a battery electric vehicle (BEV) or hybrid electric vehicle (HEV).
Electric vehicle batteries differ from starting, lighting, and ignition (SLI) batteries, as they are typically lithium-ion batteries that are designed for high power-to-weight ratio and energy density. Smaller, lighter batteries are desirable because they reduce the weight of the vehicle and therefore improve its performance. Compared to liquid fuels, most current battery technologies have much lower specific energy, and this often impacts the maximum range of all-electric vehicles. Unlike earlier battery chemistries, notably nickel-cadmium, lithium-ion batteries can be discharged and recharged daily and at any state of charge. Other types of rechargeable batteries used in electric vehicles include lead–acid, nickel-cadmium, nickel–metal hydride, and others.
The battery makes up a significant portion of the cost and environmental impact of an electric vehicle. Growth in the industry has generated interest in securing ethical battery supply chains, which presents many challenges and has become an important geopolitical issue. , the cost of electric vehicle batteries has fallen 87% since 2010 on a per kilowatt-hour basis. As of 2018, vehicles with over of all-electric range, such as the Tesla Model S, are available.
The price of electricity to run an electric vehicle is a small fraction of the cost of fuel for equivalent internal combustion engines, reflecting higher energy efficiency. (Generic statement- fuel and electricity prices vary globally as does vehicle size and demand -source?)
rechargeable battery
Lead–acid battery
Flooded lead-acid batteries are the oldest, cheapest, and, in the past, most common vehicle batteries available. There are two main types of lead-acid batteries: automobile engine starter batteries, and deep cycle batteries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts.Remark: at least 5 students should be enrolled for the course to be g
Lithium iron phosphate or lithium ferro-phosphate (LFP) is an inorganic compound with the formula LiFePO4. It is a gray, red-grey, brown or black solid that is insoluble in water. The material has attracted attention as a component of lithium iron phosphate batteries, a type of Li-ion battery. This battery chemistry is targeted for use in power tools, electric vehicles, solar energy installations and more recently large grid-scale energy storage.
A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, with no secondary source of propulsion (a hydrogen fuel cell, internal combustion engine, etc.). BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank.
A valve regulated lead–acid (VRLA) battery, commonly known as a sealed lead–acid (SLA) battery, is a type of lead–acid battery characterized by a limited amount of electrolyte ("starved" electrolyte) absorbed in a plate separator or formed into a gel; proportioning of the negative and positive plates so that oxygen recombination is facilitated within the cell; and the presence of a relief valve that retains the battery contents independent of the position of the cells.
A user’s benefit from the energy stored in a battery over its lifetime depends on the time-varying characteristics of the battery, which are in turn affected by the chosen usage behavior. Both the capacity shrinkage and the number of lifetime cycles are st ...
With the growing popularity of electric vehicles (EVs), maintaining power grid stability has become a significant challenge. To address this issue, EV charging control strategies have been developed to manage the switch between vehicle-to-grid (V2G) and gr ...
The electrification of the transport sector is a key element in decarbonizing our societies. However, energy systems will have to cope with additional electricity demand due to the charging needs of electric vehicles (EVs) together with the integration of ...