Charles's law (also known as the law of volumes) is an experimental gas law that describes how gases tend to expand when heated. A modern statement of Charles's law is:
When the pressure on a sample of a dry gas is held constant, the Kelvin temperature and the volume will be in direct proportion.
This relationship of direct proportion can be written as:
So this means:
where:
V is the volume of the gas,
T is the temperature of the gas (measured in kelvins), and
k is a non-zero constant.
This law describes how a gas expands as the temperature increases; conversely, a decrease in temperature will lead to a decrease in volume. For comparing the same substance under two different sets of conditions, the law can be written as:
The equation shows that, as absolute temperature increases, the volume of the gas also increases in proportion.
The law was named after scientist Jacques Charles, who formulated the original law in his unpublished work from the 1780s.
In two of a series of four essays presented between 2 and 30 October 1801, John Dalton demonstrated by experiment that all the gases and vapours that he studied expanded by the same amount between two fixed points of temperature. The French natural philosopher Joseph Louis Gay-Lussac confirmed the discovery in a presentation to the French National Institute on 31 Jan 1802, although he credited the discovery to unpublished work from the 1780s by Jacques Charles. The basic principles had already been described by Guillaume Amontons and Francis Hauksbee a century earlier.
Dalton was the first to demonstrate that the law applied generally to all gases, and to the vapours of volatile liquids if the temperature was well above the boiling point. Gay-Lussac concurred. With measurements only at the two thermometric fixed points of water (0°C and 100°C), Gay-Lussac was unable to show that the equation relating volume to temperature was a linear function. On mathematical grounds alone, Gay-Lussac's paper does not permit the assignment of any law stating the linear relation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Gas is one of the four fundamental states of matter. The others are solid, liquid, and plasma. A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles.
The 'kelvin', symbol K, is a unit of measurement for temperature. The Kelvin scale is an absolute scale, which is defined such that 0 K is absolute zero and a change of thermodynamic temperature T by 1 kelvin corresponds to a change of thermal energy kT by 1.380649e−23J. The Boltzmann constant was exactly defined in the 2019 redefinition of the SI base units such that the triple point of water is 273.16K. The kelvin is the base unit of temperature in the International System of Units (SI), used alongside its prefixed forms.
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
The self-assembly of surfactant monolayers at interfaces plays a sweeping role in tasks ranging from household cleaning to the regulation of the respiratory system. The synergy between different nanoscale species at an interface can yield assemblies with e ...
AMER CHEMICAL SOC2021
,
Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal fluctuation effects in a restricted phase space. While some information about dynamical response functions is available from theoretical studies of th ...
Low-dimensional quantum magnets at finite temperatures present a complex interplay of quantum and thermal fluctuation effects in a restricted phase space. While some information about dynamical response functions is available from theoretical studies of th ...