Proof of work (PoW) is a form of cryptographic proof in which one party (the prover) proves to others (the verifiers) that a certain amount of a specific computational effort has been expended. Verifiers can subsequently confirm this expenditure with minimal effort on their part. The concept was invented by Moni Naor and Cynthia Dwork in 1993 as a way to deter denial-of-service attacks and other service abuses such as spam on a network by requiring some work from a service requester, usually meaning processing time by a computer. The term "proof of work" was first coined and formalized in a 1999 paper by Markus Jakobsson and Ari Juels. Proof of work was later popularized by Bitcoin as a foundation for consensus in a permissionless decentralized network, in which miners compete to append blocks and mine new currency, each miner experiencing a success probability proportional to the computational effort expended. PoW and PoS (proof of stake) remain the two best known Sybil deterrence mechanisms. In the context of cryptocurrencies they are the most common mechanisms. A key feature of proof-of-work schemes is their asymmetry: the work – the computation – must be moderately hard (yet feasible) on the prover or requester side but easy to check for the verifier or service provider. This idea is also known as a CPU cost function, client puzzle, computational puzzle, or CPU pricing function. Another common feature is built-in incentive-structures that reward allocating computational capacity to the network with value in the form of cryptocurrency. The purpose of proof-of-work algorithms is not proving that certain work was carried out or that a computational puzzle was "solved", but deterring manipulation of data by establishing large energy and hardware-control requirements to be able to do so. Proof-of-work systems have been criticized by environmentalists for their energy consumption. One popular system, used in Hashcash, uses partial hash inversions to prove that computation was done, as a goodwill token to send an e-mail.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-234: Technologies for democratic society
This course will offer students a broad but hands-on introduction to technologies of human self-organization.
CS-438: Decentralized systems engineering
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
FIN-413: Financial applications of blockchains and distributed ledgers
This course provides an introduction to Distributed Ledger Technology (DLT), blockchains and cryptocurrencies, and their applications in finance and banking and draws the analogies between Traditional
Related lectures (33)
Sybil Defenses: Artificial Costs
Explores Sybil defenses, social network defenses, Proof of Personhood, and next steps in cybersecurity.
Social Influence and Choice
Explores social influence, democracy, individual autonomy, equality, and decision-making models.
Decentralized Systems: Byzantine Consensus and Bitcoin
Explores Byzantine consensus in decentralized systems and Bitcoin's consensus mechanisms.
Show more
Related publications (118)

Exploring SIDH-Based Signature Parameters

Tako Boris Fouotsa, Laurane Chloé Angélina Marco, Andrea Basso

Isogeny-based cryptography is an instance of post-quantum cryptography whose fundamental problem consists of finding an isogeny between two (isogenous) elliptic curves E and E′. This problem is closely related to that of computing the endomorphism ring of ...
Springer2024

A Gapless Post-quantum Hash Proof System in the Hamming Metric

Serge Vaudenay, Bénédikt Minh Dang Tran

A hash proof system (HPS) is a form of implicit proof of membership to a language. Out of the very few existing post-quantum HPS, most are based on languages of ciphertexts of code-based or lattice-based cryptosystems and inherently suffer from a gap cause ...
2023

Byzantine consensus is Θ(n^2): the Dolev-Reischuk bound is tight even in partial synchrony!

Rachid Guerraoui, Jovan Komatovic, Pierre Philippe Civit, Manuel José Ribeiro Vidigueira, Vincent Gramoli, Seth Gilbert

The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic (in the number of processes) communication complexity in the worst case: given a system with n processes and at most f < n/3 failures, any solution t ...
2023
Show more
Related concepts (16)
Blockchain
A blockchain is a distributed ledger with growing lists of records (blocks) that are securely linked together via cryptographic hashes. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a Merkle tree, where data nodes are represented by leaves). Since each block contains information about the previous block, they effectively form a chain (compare linked list data structure), with each additional block linking to the ones before it.
Bitcoin
Bitcoin (abbreviation: BTC or XBT; sign: ₿) is a decentralized digital currency. Bitcoin transactions are verified by network nodes through cryptography and recorded in a public distributed ledger called a blockchain. The cryptocurrency was invented in 2008 by an unknown person or group of people using the name Satoshi Nakamoto. The currency began use in 2009, when its implementation was released as open-source software. The word "bitcoin" was defined in a white paper published on October 31, 2008.
Cryptocurrency
A cryptocurrency, crypto-currency, or crypto is a digital currency designed to work as a medium of exchange through a computer network that is not reliant on any central authority, such as a government or bank, to uphold or maintain it. It is a decentralized system for verifying that the parties to a transaction have the money they claim to have, eliminating the need for traditional intermediaries, such as banks, when funds are being transferred between two entities.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.