In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
The name coproduct originates from the fact that the disjoint union is the categorical dual of the product space construction.
Let {Xi : i ∈ I} be a family of topological spaces indexed by I. Let
be the disjoint union of the underlying sets. For each i in I, let
be the canonical injection (defined by ). The disjoint union topology on X is defined as the finest topology on X for which all the canonical injections are continuous (i.e.: it is the final topology on X induced by the canonical injections).
Explicitly, the disjoint union topology can be described as follows. A subset U of X is open in X if and only if its is open in Xi for each i ∈ I. Yet another formulation is that a subset V of X is open relative to X iff its intersection with Xi is open relative to Xi for each i.
The disjoint union space X, together with the canonical injections, can be characterized by the following universal property: If Y is a topological space, and fi : Xi → Y is a continuous map for each i ∈ I, then there exists precisely one continuous map f : X → Y such that the following set of diagrams commute:
This shows that the disjoint union is the coproduct in the . It follows from the above universal property that a map f : X → Y is continuous iff fi = f o φi is continuous for all i in I.
In addition to being continuous, the canonical injections φi : Xi → X are open and closed maps. It follows that the injections are topological embeddings so that each Xi may be canonically thought of as a subspace of X.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Concepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
In general topology and related areas of mathematics, the final topology (or coinduced, strong, colimit, or inductive topology) on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous. The quotient topology on a quotient space is a final topology, with respect to a single surjective function, namely the quotient map. The disjoint union topology is the final topology with respect to the inclusion maps.
In mathematics, the category of topological spaces, often denoted Top, is the whose s are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again continuous, and the identity function is continuous. The study of Top and of properties of topological spaces using the techniques of is known as categorical topology. N.B. Some authors use the name Top for the categories with topological manifolds, with compactly generated spaces as objects and continuous maps as morphisms or with the .
In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure).
Symmetry and topology are fundamental properties of nature. Mathematics provides us with a general framework to understand these concepts. On one side, symmetry describes the invariance properties of an object for specific transformations. On the other sid ...
EPFL2020
The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union ...
Two channels are said to be equivalent if they are degraded from each other. The space of equivalent channels with input alphabet X and output alphabet Y can be naturally endowed with the quotient of the Euclidean topology by the equivalence relation. We s ...