In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.
A topological space X is called locally Euclidean if there is a non-negative integer n such that every point in X has a neighborhood which is homeomorphic to real n-space Rn.
A topological manifold is a locally Euclidean Hausdorff space. It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact or second-countable.
In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to Rn.
List of manifolds
The real coordinate space Rn is an n-manifold.
Any discrete space is a 0-dimensional manifold.
A circle is a compact 1-manifold.
A torus and a Klein bottle are compact 2-manifolds (or surfaces).
The n-dimensional sphere Sn is a compact n-manifold.
The n-dimensional torus Tn (the product of n circles) is a compact n-manifold.
Projective spaces over the reals, complexes, or quaternions are compact manifolds.
Real projective space RPn is a n-dimensional manifold.
Complex projective space CPn is a 2n-dimensional manifold.
Quaternionic projective space HPn is a 4n-dimensional manifold.
Manifolds related to projective space include Grassmannians, flag manifolds, and Stiefel manifolds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Smooth manifolds constitute a certain class of topological spaces which locally look like some Euclidean space R^n and on which one can do calculus. We introduce the key concepts of this subject, such
In mathematics, the real coordinate space of dimension n, denoted Rn or , is the set of the n-tuples of real numbers, that is the set of all sequences of n real numbers. Special cases are called the real line R1 and the real coordinate plane R2. With component-wise addition and scalar multiplication, it is a real vector space, and its elements are called coordinate vectors. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space.
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
In topology, the long line (or Alexandroff line) is a topological space somewhat similar to the real line, but in a certain way "longer". It behaves locally just like the real line, but has different large-scale properties (e.g., it is neither Lindelöf nor separable). Therefore, it serves as an important counterexample in topology. Intuitively, the usual real-number line consists of a countable number of line segments laid end-to-end, whereas the long line is constructed from an uncountable number of such segments.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
Topological Weyl semimetals represent a novel class of nontrivial materials, where band crossings with linear dispersions take place at generic momenta across reciprocal space. These crossings give rise to low -energy properties akin to those of Weyl fermi ...
College Pk2024
,
Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...
E. E. Floyd showed in 1973 that there exist only two nontrivial cobor-dism classes that contain manifolds with three cells, and that they lie in dimen-sions 10 and 5. We prove that there is an action of the cyclic group C2 on the 10-dimensional Floyd manif ...