Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.
In estimation theory, two approaches are generally considered:
The probabilistic approach (described in this article) assumes that the measured data is random with probability distribution dependent on the parameters of interest
The set-membership approach assumes that the measured data vector belongs to a set which depends on the parameter vector.
For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the parameter sought; the estimate is based on a small random sample of voters. Alternatively, it is desired to estimate the probability of a voter voting for a particular candidate, based on some demographic features, such as age.
Or, for example, in radar the aim is to find the range of objects (airplanes, boats, etc.) by analyzing the two-way transit timing of received echoes of transmitted pulses. Since the reflected pulses are unavoidably embedded in electrical noise, their measured values are randomly distributed, so that the transit time must be estimated.
As another example, in electrical communication theory, the measurements which contain information regarding the parameters of interest are often associated with a noisy signal.
For a given model, several statistical "ingredients" are needed so the estimator can be implemented. The first is a statistical sample – a set of data points taken from a random vector (RV) of size N. Put into a vector,
Secondly, there are M parameters
whose values are to be estimated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course presents the problem of static optimization, with and without (equality and inequality) constraints, both from the theoretical (optimality conditions) and methodological (algorithms) point
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Detection theory or signal detection theory is a means to measure the ability to differentiate between information-bearing patterns (called stimulus in living organisms, signal in machines) and random patterns that distract from the information (called noise, consisting of background stimuli and random activity of the detection machine and of the nervous system of the operator). In the field of electronics, signal recovery is the separation of such patterns from a disguising background.
In signal processing, the Wiener filter is a filter used to produce an estimate of a desired or target random process by linear time-invariant (LTI) filtering of an observed noisy process, assuming known stationary signal and noise spectra, and additive noise. The Wiener filter minimizes the mean square error between the estimated random process and the desired process. The goal of the Wiener filter is to compute a statistical estimate of an unknown signal using a related signal as an input and filtering that known signal to produce the estimate as an output.
Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system.
Electrochemical Impedance Spectroscopy (EIS) and Equivalent Circuit Models (ECMs) are widely used to characterize the impedance and estimate parameters of electrochemical systems such as batteries. We use a generic ECM with ten parameters grouped to model ...
We consider optimal regimes for algorithm-assisted human decision-making. Such regimes are decision functions of measured pre-treatment variables and, by leveraging natural treatment values, enjoy a superoptimality property whereby they are guaranteed to o ...
A user’s benefit from the energy stored in a battery over its lifetime depends on the time-varying characteristics of the battery, which are in turn affected by the chosen usage behavior. Both the capacity shrinkage and the number of lifetime cycles are st ...