Summary
Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltwater (especially sea water) is desalinated to produce water suitable for human consumption or irrigation. The by-product of the desalination process is brine. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water resources. Due to its energy consumption, desalinating sea water is generally more costly than fresh water from surface water or groundwater, water recycling and water conservation. However, these alternatives are not always available and depletion of reserves is a critical problem worldwide. Desalination processes are using either thermal methods (in the case of distillation) or membrane-based methods (e.g. in the case of reverse osmosis) energy types. An estimate in 2018 found that "18,426 desalination plants are in operation in over 150 countries. They produce 87 million cubic meters of clean water each day and supply over 300 million people." The energy intensity has improved: It is now about 3 kWh/m3 (in 2018), down by a factor of 10 from 20-30 kWh/m3 in 1970. Nevertheless, desalination represented about 25% of the energy consumed by the water sector in 2016. Distillation#Desalination by distillation and Distilled water#History Desalination has been known to history for millennia as both a concept, and later practice, though in a limited form. The ancient Greek philosopher Aristotle observed in his work Meteorology that "salt water, when it turns into vapour, becomes sweet and the vapour does not form salt water again when it condenses," and also noticed that a fine wax vessel would hold potable water after being submerged long enough in seawater, having acted as a membrane to filter the salt.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.