Concept

Tangential angle

In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. (Some authors define the angle as the deviation from the direction of the curve at some fixed starting point. This is equivalent to the definition given here by the addition of a constant to the angle or by rotating the curve.) If a curve is given parametrically by (x(t), y(t)), then the tangential angle φ at t is defined (up to a multiple of 2π) by Here, the prime symbol denotes the derivative with respect to t. Thus, the tangential angle specifies the direction of the velocity vector (x(t), y(t)), while the speed specifies its magnitude. The vector is called the unit tangent vector, so an equivalent definition is that the tangential angle at t is the angle φ such that (cos φ, sin φ) is the unit tangent vector at t. If the curve is parametrized by arc length s, so = 1, then the definition simplifies to In this case, the curvature κ is given by φ′(s), where κ is taken to be positive if the curve bends to the left and negative if the curve bends to the right. Conversely, the tangent angle at a given point equals the definite integral of curvature up to that point: If the curve is given by the graph of a function y = f(x), then we may take (x, f(x)) as the parametrization, and we may assume φ is between −π/2 and π/2. This produces the explicit expression In polar coordinates, the polar tangential angle is defined as the angle between the tangent line to the curve at the given point and ray from the origin to the point. If ψ denotes the polar tangential angle, then ψ = φ − θ, where φ is as above and θ is, as usual, the polar angle. If the curve is defined in polar coordinates by r = f(θ), then the polar tangential angle ψ at θ is defined (up to a multiple of 2π) by If the curve is parametrized by arc length s as r = r(s), θ = θ(s), so = 1, then the definition becomes The logarithmic spiral can be defined a curve whose polar tangential angle is constant.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.