Résumé
thumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini. Un vieil exemple est celui du demi-cercle de rayon r, où r désigne un nombre réel positif. Sa longueur est égale à πr. Un exemple, plus simple, est donné par un segment, sa longueur est égale à la distance qui sépare ses deux extrémités. Selon l'époque, différentes méthodes permettent de définir et de mesurer la longueur d'un ensemble d'arcs de plus en plus vaste. Eudoxe de Cnide, un mathématicien grec du , puis Archimède utilisent une méthode, dite d'exhaustion pour calculer celle d'un arc de cercle. La physique de la fin du développe une nouvelle approche, fondée sur les progrès réalisés en mécanique du point grâce en particulier au calcul infinitésimal appliqué à l'astronomie. La longueur d'un arc est perçue comme le produit du temps nécessaire à un point matériel pour parcourir l'arc par sa vitesse, si elle est supposée constante. Cette définition est généralisée par Bernhard Riemann et devient la pierre angulaire pour construire une distance et de nouvelles formes de géométries, sur des objets maintenant appelés variétés riemanniennes. Pour le mathématicien français Camille Jordan (1838 - 1922), ces définitions sont trop restrictives. Il s'intéresse aux propriétés d'une courbe fermée, c'est-à-dire un arc dont le point initial se confond avec le point final. La définition précédente, issue de la physique deux siècles plus tôt, suppose que l'arc soit dérivable. Cette limitation empêche l'usage d'un vaste arsenal de méthodes, pourtant indispensables à la résolution de nombreuses questions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.