Summary
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement of actual performance of any engine or power source. It is also used as a measurement of performance of a vehicle as a whole, with the engine's power output being divided by the weight (or mass) of the vehicle, to give a metric that is independent of the vehicle's size. Power-to-weight is often quoted by manufacturers at the peak value, but the actual value may vary in use and variations will affect performance. The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle's performance to another. Power-to-weight ratio is equal to thrust per unit mass multiplied by the velocity of any vehicle. The power-to-weight ratio (specific power) formula for an engine (power plant) is the power generated by the engine divided by the mass. in this context is a colloquial term for . To see this, note that what an engineer means by the "power to weight ratio" of an electric motor is not infinite in a zero gravity environment. A typical turbocharged V8 diesel engine might have an engine power of and a mass of , giving it a power-to-weight ratio of 0.65 kW/kg (0.40 hp/lb). Examples of high power-to-weight ratios can often be found in turbines. This is because of their ability to operate at very high speeds. For example, the Space Shuttle's main engines used turbopumps (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and liquid hydrogen) into the engine's combustion chamber. The original liquid hydrogen turbopump is similar in size to an automobile engine (weighing approximately ) and produces for a power-to-weight ratio of 153 kW/kg (93 hp/lb).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
COM-302: Principles of digital communications
This course is on the foundations of digital communication. The focus is on the transmission problem (rather than being on source coding).
MICRO-617: Energy Autonomous Wireless Smart Systems
The course provides in depth knowledge on how to design an energy autonomous microsystem embedding sensors with wireless transmission of information. It covers the energy generation, power management,
Show more
Related lectures (32)
Heat Equation: Diffusion
Covers the heat equation for diffusion and conservation of thermal energy.
Gaussian Random Vectors
Explores Gaussian random vectors and their statistical properties, emphasizing the importance of specifying statistical properties in complex valued random vectors.
Airport Pavements: Design and Load Considerations
Discusses airport pavement design, load distribution, tire pressures, sizing methods, and foundation layers for ensuring durability and safety.
Show more
Related publications (108)