Summary
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7^1, 9 = 3^2 and 64 = 2^6 are prime powers, while 6 = 2 × 3, 12 = 2^2 × 3 and 36 = 6^2 = 2^2 × 3^2 are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, ... . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo pn (that is, the group of units of the ring Z/pnZ) is cyclic. The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite field (which is unique up to isomorphism). A property of prime powers used frequently in analytic number theory is that the set of prime powers which are not prime is a small set in the sense that the infinite sum of their reciprocals converges, although the primes are a large set. The totient function (φ) and sigma functions (σ0) and (σ1) of a prime power are calculated by the formulas All prime powers are deficient numbers. A prime power pn is an n-almost prime. It is not known whether a prime power pn can be a member of an amicable pair. If there is such a number, then pn must be greater than 101500 and n must be greater than 1400.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (6)
Related concepts (10)
Multiplicative group of integers modulo n
In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Divisor function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
Divisor
In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder. An integer n is divisible by a nonzero integer m if there exists an integer k such that . This is written as Other ways of saying the same thing are that m divides n, m is a divisor of n, m is a factor of n, and n is a multiple of m.
Show more