A feedwater heater is a power plant component used to pre-heat water delivered to a steam generating boiler. Preheating the feedwater reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system. This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feedwater is introduced back into the steam cycle.
In a steam power plant (usually modeled as a modified Rankine cycle), feedwater heaters allow the feedwater to be brought up to the saturation temperature very gradually. This minimizes the inevitable irreversibilities associated with heat transfer to the working fluid (water). See the article on the second law of thermodynamics for a further discussion of such irreversibilities.
The energy used to heat the feedwater is usually derived from steam extracted between the stages of the steam turbine. Therefore, the steam that would be used to perform expansion work in the turbine (and therefore generate power) is not utilized for that purpose. The percentage of the total cycle steam mass flow used for the feedwater heater is termed the extraction fraction and must be carefully optimized for maximum power plant thermal efficiency since increasing this fraction causes a decrease in turbine power output.
Feedwater heaters can also be "open" or "closed" heat exchangers. An open heat exchanger is one in which extracted steam is allowed to mix with the feedwater. This kind of heater will normally require a feed pump at both the feed inlet and outlet since the pressure in the heater is between the boiler pressure and the condenser pressure. A deaerator is a special case of the open feedwater heater which is specifically designed to remove non-condensable gases from the feedwater.
Closed feedwater heaters are typically shell and tube heat exchangers where the feedwater passes throughout the tubes and is heated by turbine extraction steam. These do not require separate pumps before and after the heater to boost the feedwater to the pressure of the extracted steam as with an open heater.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.
Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. Steam that is saturated or superheated (water vapor) is invisible; however, wet steam, a visible mist or aerosol of water droplets, is often referred to as "steam".
A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbine involves advanced metalwork to form high-grade steel alloys into precision parts using technologies that first became available in the 20th century; continued advances in durability and efficiency of steam turbines remains central to the energy economics of the 21st century.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Explores steam turbine efficiency, design parameters, and off-design characteristics, emphasizing the impact of operating conditions and system components.
In spite of the large degree of energy integration in the modern syngas production units, the highly endothermic reactions of steam methane reforming and the combined steam and power generation still require a huge amount of energy that is typically suppli ...
2019
In spite of the large degree of energy integration in the modern syngas production units, the highly endothermic reactions of steam methane reforming and the combined steam and power generation still require a huge amount of energy that is typically suppli ...
In recent years, the International Maritime Organization agreed on aiming to reduce shipping’s greenhouse gas emissions by 50% with respect to 2009 levels. Meanwhile, cruise ship tourism is growing at a fast pace, making the challenge of achieving this goa ...