Summary
Respiratory burst (or oxidative burst) is the rapid release of the reactive oxygen species (ROS), superoxide anion (O2-) and hydrogen peroxide (H2O2), from different cell types. This is usually utilised for mammalian immunological defence, but also plays a role in cell signalling. Respiratory burst is also implicated in the ovum of animals following fertilization. It may also occur in plant cells. Immune cells can be divided into myeloid cells and lymphoid cells. Myeloid cells, including macrophages and neutrophils, are especially implicated in the respiratory burst. They are phagocytic, and the respiratory burst is vital for the subsequent degradation of internalised bacteria or other pathogens. This is an important aspect of the innate immunity. Respiratory burst requires a 10 to 20 fold increase in oxygen consumption through NADPH oxidase (NOX2 in humans) activity. NADPH is the key substrate of NOX2, and bears reducing power. Glycogen breakdown is vital to produce NADPH. This occurs via the pentose phosphate pathway. The NOX2 enzyme is bound in the phagolysosome membrane. Post bacterial phagocytosis, it is activated, producing superoxide via its redox centre, which transfers electrons from cytosolic NADPH to O2 in the phagosome. 2O2 + NADPH —> 2O2•– + NADP+ + H+ The superoxide can then spontaneously or enzymatically react with other molecules to give rise to other ROS. The phagocytic membrane reseals to limit exposure of the extracellular environment to the generated reactive free radicals. There are 3 main pathways for the generation of reactive oxygen species or reactive nitrogen species (RNS) in effector cells: Superoxide dismutase (or alternatively, myeloperoxidase) generates hydrogen peroxide from superoxide. Hydroxyl radicals are then generated via the Haber–Weiss reaction or the Fenton reaction, of which are both catalyzed by Fe2+. O2•–+ H2O2 —> •OH + OH– + O2 In the presence of halide ions, prominently chloride ions, myeloperoxidase uses hydrogen peroxide to produce hypochlorous acid.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
BIO-310: Immunology
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Related publications (38)
Related concepts (16)
Innate immune system
The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms (see Beyond vertebrates).
Chronic granulomatous disease
Chronic granulomatous disease (CGD), also known as Bridges–Good syndrome, chronic granulomatous disorder, and Quie syndrome, is a diverse group of hereditary diseases in which certain cells of the immune system have difficulty forming the reactive oxygen compounds (most importantly the superoxide radical due to defective phagocyte NADPH oxidase) used to kill certain ingested pathogens. This leads to the formation of granulomas in many organs. CGD affects about 1 in 200,000 people in the United States, with about 20 new cases diagnosed each year.
White blood cell
White blood cells, also called leukocytes or leucocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells include three main subtypes; granulocytes, lymphocytes and monocytes. White cells is most preferred rather than the, white blood cells, because, they spend most of their time in the lymph or plasma. All white blood cells are produced and derived from multipotent cells in the bone marrow known as hematopoietic stem cells.
Show more