Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing development of insights into how biomaterials interact with the human body and eventually how those interactions determine the clinical success of a medical device (such as pacemaker, hip replacement or stent). Modern medical devices and prostheses are often made of more than one material so it might not always be sufficient to talk about the biocompatibility of a specific material.
Even the same materials, such as diamond-like carbon coatings, may show different levels of biocompatibility based on the manufacturing conditions and characteristics.
Since the immune response and repair functions in the body are so complicated it is not adequate to describe the biocompatibility of a single material in relation to a single cell type or tissue. Sometimes one hears of biocompatibility testing that is a large battery of in vitro test that is used in accordance with ISO 10993 (or other similar standards) to determine if a certain material (or rather biomedical product) is biocompatible. These tests do not determine the biocompatibility of a material, but they constitute an important step towards the animal testing and finally clinical trials that will determine the biocompatibility of the material in a given application, and thus medical devices such as implants or drug delivery devices. Research results have concluded that during performing in vitro cytotoxicity testing of biomaterials, "the authors should carefully specify the conditions of the test and comparison of different studies should be carried out with caution".
The word biocompatibility seems to have been mentioned for the first time in peer-review journals and meetings in 1970 by RJ Hegyeli (Amer Chem Soc Annual Meeting abstract) and CA Homsy. It took almost two decades before it began to be commonly used in scientific literature (see the graph below).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. For example, an implant may be a rod, used to strengthen weak bones. Medical implants are human-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone, or apatite depending on what is the most functional.
In medicine, a prosthesis (: prostheses; from prósthesis), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trauma, disease, or a condition present at birth (congenital disorder). Prostheses are intended to restore the normal functions of the missing body part. Amputee rehabilitation is primarily coordinated by a physiatrist as part of an inter-disciplinary team consisting of physiatrists, prosthetists, nurses, physical therapists, and occupational therapists.
A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products.
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
The course presents materials science and engineering from the perspective of biological applications. Lectures provide solid fundamentals on the design, fabrication, and characterization of materials
The course introduces the main classes of biomaterials used in the biomedical field. The interactions with biological environment are discussed and challenges highlighted. State of the art examples pe
In transitioning toward a sustainable economy, mycelial materials are recognized for their adaptability, biocompatibility, and eco-friendliness. This paper updates the exploration of mycelial materials, defining their scope and emphasizing the need for pre ...
Biomedical sensing applications, including breath analysis, contribute to increasing the amount of electronic waste, as the sensors are frequently disposed, due to hygienic considerations. Consequently, the development of sustainable sensor solutions is cr ...
IEEE2023
,
Biodegradable implanted devices and microsystems are candidates to fulfill the utmost required in-vivo assistance for a variety of envisioned bio-medical health care applications. They range from monitoring biomarkers, recording, and stimulation, to local ...