Category

Biomaterials science

A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomaterials is about fifty years old. The study of biomaterials is called biomaterials science or biomaterials engineering. It has experienced steady and strong growth over its history, with many companies investing large amounts of money into the development of new products. Biomaterials science encompasses elements of medicine, biology, chemistry, tissue engineering and materials science. Note that a biomaterial is different from a biological material, such as bone, that is produced by a biological system. Additionally, care should be exercised in defining a biomaterial as biocompatible, since it is application-specific. A biomaterial that is biocompatible or suitable for one application may not be biocompatible in another. Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application, and thus comprise the whole or part of a living structure or biomedical device which performs, augments, or replaces a natural function. Such functions may be relatively passive, like being used for a heart valve, or maybe bioactive with a more interactive functionality such as hydroxy-apatite coated hip implants. Biomaterials are also used every day in dental applications, surgery, and drug delivery. For example, a construct with impregnated pharmaceutical products can be placed into the body, which permits the prolonged release of a drug over an extended period of time. A biomaterial may also be an autograft, allograft or xenograft used as a transplant material. The ability of an engineered biomaterial to induce a physiological response that is supportive of the biomaterial's function and performance is known as bioactivity.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (37)
Topics in dentistry
Dentistry, also known as dental medicine and oral medicine, is the branch of medicine focused on the teeth, gums, and mouth. It consists of the study, diagnosis, prevention, management, and treatment of diseases, disorders, and conditions of the mouth, most commonly focused on dentition (the development and arrangement of teeth) as well as the oral mucosa. Dentistry may also encompass other aspects of the craniofacial complex including the temporomandibular joint. The practitioner is called a dentist.
Orthopedics
Orthopedic surgery or orthopedics (alternatively spelt orthopaedics) is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders. Nicholas Andry coined the word in French as orthopédie, derived from the Ancient Greek words ὀρθός orthos ("correct", "straight") and παιδίον paidion ("child"), and published Orthopedie (translated as Orthopædia: Or the Art of Correcting and Preventing Deformities in Children) in 1741.
Carbohydrates
A carbohydrate (ˌkɑːrboʊˈhaɪdreɪt) is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where m may or may not be different from n), which does not mean the H has covalent bonds with O (for example with , H has a covalent bond with C but not with O). However, not all carbohydrates conform to this precise stoichiometric definition (e.g.
Show more
Related concepts (62)
Tooth
A tooth (: teeth) is a hard, calcified structure found in the jaws (or mouths) of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.
Dental restoration
Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.
Human tooth development
Tooth development or odontogenesis is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth. For human teeth to have a healthy oral environment, all parts of the tooth must develop during appropriate stages of fetal development. Primary (baby) teeth start to form between the sixth and eighth week of prenatal development, and permanent teeth begin to form in the twentieth week. If teeth do not start to develop at or near these times, they will not develop at all, resulting in hypodontia or anodontia.
Show more
Related courses (4)
MSE-471: Biomaterials (pour MX)
The course introduces the main classes of biomaterials used in the biomedical field. The interactions with biological environment are discussed and challenges highlighted. State of the art examples pe
ME-482: Biomechanics of the musculoskeletal system
The basis for a mechanical description of the musculoskeletal system are presented. This description is based on the concepts of solid mechanics, physiology and anatomy of the musculoskeletal system.
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related lectures (21)
Primary Stability in Cementless THA
Explores primary stability in cementless total hip arthroplasty and its impact on preventing aseptic loosening and revision surgeries.
Mechanical Systems: Gear Transmission Principles
Discusses gear transmission principles, focusing on standardized parameters and conditions for effective engagement and durability in mechanical systems.
Manmade Biomaterials: Metals and Alloys
Explores the properties and applications of stainless steel, titanium, and cobalt alloys in orthopaedic implants.
Show more
Related publications (387)

Design of Customized Mouthguards with Superior Protection Using Digital-Based Technologies and Impact Tests

Dominique Pioletti, Naser Nasrollahzadeh Mamaghani, Martin Broome

Background In contact sports, an impact on the jaw can generate destructive stress on the tooth-bone system. Mouthguards can be beneficial in reducing the injury risk by changing the dynamics of the trauma. The material properties of mouthguards and their ...
Springer2024

Customized modular multi-material mouthguard and method of making the same

Dominique Pioletti, Naser Nasrollahzadeh Mamaghani, Martin Broome

There is described a mouthguard comprising an externally exposed impact protective region defined by a first material property and configured to cover a front tooth, an internally exposed occlusional cushioning region defined by a second material property ...
2024

Investigating neural resource allocation in the sensorimotor control of extra limbs

Giulia Dominijanni

The rise of robotic body augmentation brings forth new developments that will transform robotics, human-machine interaction, and wearable electronics. Extra robotic limbs, although building upon restorative technologies, bring their own set of challenges i ...
EPFL2024
Show more
Related startups (3)
Suriasis
Active in surface treatment, bone implants and osseointegration. Suriasis offers SurfLink, a revolutionary surface treatment for bone anchored implants, promoting faster bone formation and integration for improved implant performance.
Regenosca
Active in biomaterials, implant technology and soft tissue repair. Regenosca develops innovative biomaterial implants for soft tissue repair, offering off-the-shelf solutions that promote cell migration and reduce operation time.
Lymphatica
Active in medical device, lymphatic diseases and lymphedema. Lymphatica Medtech SA develops innovative implants for continuous lymph drainage, aiming to improve the well-being of patients with lymphatic diseases.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.