The Kyoto Protocol was an international treaty which extended the 1992 United Nations Framework Convention on Climate Change (UNFCCC) that commits state parties to reduce greenhouse gas emissions, based on the scientific consensus that global warming is occurring and that human-made CO2 emissions are driving it. The Kyoto Protocol was adopted in Kyoto, Japan, on 11 December 1997 and entered into force on 16 February 2005. There were 192 parties (Canada withdrew from the protocol, effective December 2012) to the Protocol in 2020.
The Kyoto Protocol implemented the objective of the UNFCCC to reduce the onset of global warming by reducing greenhouse gas concentrations in the atmosphere to "a level that would prevent dangerous anthropogenic interference with the climate system" (Article 2). The Kyoto Protocol applied to the seven greenhouse gases listed in Annex A: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3). Nitrogen trifluoride was added for the second compliance period during the Doha Round.
The Protocol was based on the principle of common but differentiated responsibilities: it acknowledged that individual countries have different capabilities in combating climate change, owing to economic development, and therefore placed the obligation to reduce current emissions on developed countries on the basis that they are historically responsible for the current levels of greenhouse gases in the atmosphere.
The Protocol's first commitment period started in 2008 and ended in 2012. All 36 countries that fully participated in the first commitment period complied with the Protocol. However, nine countries had to resort to the flexibility mechanisms by funding emission reductions in other countries because their national emissions were slightly greater than their targets. The financial crisis of 2007–08 helped reduce the emissions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide () from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes.
Greenhouse gas emissions (abbreviated as GHG emissions) from human activities strengthen the greenhouse effect, contributing to climate change. Carbon dioxide (), from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the US, although the United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Le cours présente les enjeux mondiaux liés au climat: système climatique et prévisions ; impacts sur écosystèmes et biodiversité ; cadrage historique et débat public ; objectifs et politiques climatiq
The transition to a low-carbon economy can create new job opportunities but may cause job displacement in some sectors that heavily rely on fossil fuels. In order to gain a balanced appraisal in understanding the broader consequences of climate policies, t ...
The recent economic sanctions against Russia can jeopardise the sustainability of the European Union's (EU) energy supply. Despite the EU's strong commitment to stringent abatement targets, fossil fuels still play a significant role in the EU energy policy ...
ELSEVIER2022
,
In this paper, we propose setting up a fund to finance the removal of all Swiss territorial GHG (greenhouse gas) emissions from 2030. The fund will accelerate decarbonization and help reach annual net zero emissions around 2040, and then progressively remo ...