Egyptian astronomy began in prehistoric times, in the Predynastic Period. In the 5th millennium BCE, the stone circles at Nabta Playa may have made use of astronomical alignments. By the time the historical Dynastic Period began in the 3rd millennium BCE, the 365 day period of the Egyptian calendar was already in use, and the observation of stars was important in determining the annual flooding of the Nile.
The Egyptian pyramids were carefully aligned towards the pole star, and the temple of Amun-Re at Karnak was aligned on the rising of the midwinter Sun. Astronomy played a considerable part in fixing the dates of religious festivals and determining the hours of night, and temple astrologers were especially adept at watching the stars and observing the conjunctions and risings of the Sun, Moon, and planets, as well as the lunar phases.
In Ptolemaic Egypt, the Egyptian tradition merged with Greek astronomy and Babylonian astronomy, with the city of Alexandria in Lower Egypt becoming the centre of scientific activity across the Hellenistic world. Roman Egypt produced the greatest astronomer of the era, Ptolemy (90–168 CE). His works on astronomy, including the Almagest, became the most influential books in the history of Western astronomy. Following the Muslim conquest of Egypt, the region came to be dominated by Arabic culture and Islamic astronomy.
The astronomer Ibn Yunus (c. 950–1009) observed the Sun's position for many years using a large astrolabe, and his observations on eclipses were still used centuries later. In 1006, Ali ibn Ridwan observed the SN 1006, a supernova regarded as the brightest stellar event in recorded history, and left the most detailed description of it. In the 14th century, Najm al-Din al-Misri wrote a treatise describing over 100 different types of scientific and astronomical instruments, many of which he invented himself.
Egyptian astronomy begins in prehistoric times. The presence of stone circles at Nabta Playa in Upper Egypt dating from the 5th millennium BCE show the importance of astronomy to the religious life of ancient Egypt even in the prehistoric period.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A star chart is a celestial map of the night sky with astronomical objects laid out on a grid system. They are used to identify and locate constellations, stars, nebulae, galaxies, and planets. They have been used for human navigation since time immemorial. Note that a star chart differs from an astronomical catalog, which is a listing or tabulation of astronomical objects for a particular purpose. Tools utilizing a star chart include the astrolabe and planisphere.
The sculptured Dendera zodiac (or Denderah zodiac) is a widely known Egyptian bas-relief from the ceiling of the pronaos (or portico) of a chapel dedicated to Osiris in the Hathor temple at Dendera, containing images of Taurus (the bull) and Libra (the scales). This chapel was begun in the late Ptolemaic period; its pronaos was added by the emperor Tiberius. This led Jean-François Champollion to date the relief to the Greco-Roman period, but most of his contemporaries believed it to be of the New Kingdom.
Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia. Babylonian astronomy seemed to have focused on a select group of stars and constellations known as Ziqpu stars. These constellations may have been collected from various earlier sources. The earliest catalogue, Three Stars Each, mentions stars of the Akkadian Empire, of Amurru, of Elam and others. A numbering system based on sixty was used, a sexagesimal system.
Explores the historical use of conic sections and gnomonics in ancient sundials and astronomical instruments.
Explores the invention of instruments by artists like Albrecht Dürer to draw complex curves and lines not achievable with a ruler.
Explores the transition from epicyclic curves to Kepler's ellipses and the Copernican revolution in astronomy.
This paper presents a chronological overview of the developments in interpolation theory, from the earliest times to the present date. It brings out the connections between the results obtained in different ages, thereby putting the techniques currently us ...