The knapsack problem is the following problem in combinatorial optimization:
Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.
It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.
The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, selection of investments and portfolios, selection of assets for asset-backed securitization, and generating keys for the Merkle–Hellman and other knapsack cryptosystems.
One early application of knapsack algorithms was in the construction and scoring of tests in which the test-takers have a choice as to which questions they answer. For small examples, it is a fairly simple process to provide the test-takers with such a choice. For example, if an exam contains 12 questions each worth 10 points, the test-taker need only answer 10 questions to achieve a maximum possible score of 100 points. However, on tests with a heterogeneous distribution of point values, it is more difficult to provide choices. Feuerman and Weiss proposed a system in which students are given a heterogeneous test with a total of 125 possible points. The students are asked to answer all of the questions to the best of their abilities. Of the possible subsets of problems whose total point values add up to 100, a knapsack algorithm would determine which subset gives each student the highest possible score.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
In computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
In computational complexity theory, a numeric algorithm runs in pseudo-polynomial time if its running time is a polynomial in the numeric value of the input (the largest integer present in the input)—but not necessarily in the length of the input (the number of bits required to represent it), which is the case for polynomial time algorithms. In general, the numeric value of the input is exponential in the input length, which is why a pseudo-polynomial time algorithm does not necessarily run in polynomial time with respect to the input length.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Gruber et al. (2022) offered a framework how to explain "Physical time within human time", solving the 'two times problem: Here, I am asking whether such a problem exists at all. To question the question, I will appeal to neurobiological, evolutionary, and ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
We introduce an algorithm to reconstruct a mesh from discrete samples of a shape's Signed Distance Function (SDF). A simple geometric reinterpretation of the SDF lets us formulate the problem through a point cloud, from which a surface can be extracted wit ...