Aerodynamic heating is the heating of a solid body produced by its high-speed passage through air. In science and engineering, an understanding of aerodynamic heating is necessary for predicting the behaviour of meteoroids which enter the earth's atmosphere, to ensure spacecraft safely survive atmospheric reentry, and for the design of high-speed aircraft and missiles. The effects of aerodynamic heating on the temperature of the skin, and subsequent heat transfer into the structure, the cabin, the equipment bays and the electrical, hydraulic and fuel systems, have to be incorporated in the design of supersonic and hypersonic aircraft and missiles. One of the main concerns caused by aerodynamic heating arises in the design of the wing. For subsonic speeds, two main goals of wing design are minimizing weight and maximizing strength. Aerodynamic heating, which occurs at supersonic and hypersonic speeds, adds an additional consideration in wing structure analysis. An idealized wing structure is made up of spars, stringers, and skin segments. In a wing that normally experiences subsonic speeds, there must be a sufficient number of stringers to withstand the axial and bending stresses induced by the lift force acting on the wing. In addition, the distance between the stringers must be small enough that the skin panels do not buckle, and the panels must be thick enough to withstand the shear stress and shear flow present in the panels due to the lifting force on the wing. However, the weight of the wing must be made as small as possible, so the choice of material for the stringers and the skin is an important factor. At supersonic speeds, aerodynamic heating adds another element to this structural analysis. At normal speeds, spars and stringers experience a load called Delta P, which is a function of the lift force, first and second moments of inertia, and length of the spar. When there are more spars and stringers, the Delta P in each member is reduced, and the area of the stringer can be reduced to meet critical stress requirements.
Francesco Romano, Thomas Binderup Jensen