Summary
In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model. Phong shading and the Phong reflection model were developed at the University of Utah by Bui Tuong Phong, who published them in his 1973 Ph.D. dissertation and a 1975 paper. Phong's methods were considered radical at the time of their introduction, but have since become the de facto baseline shading method for many rendering applications. Phong's methods have proven popular due to their generally efficient use of computation time per rendered pixel. Phong shading improves upon Gouraud shading and provides a better approximation of the shading of a smooth surface. Phong shading assumes a smoothly varying surface normal vector. The Phong interpolation method works better than Gouraud shading when applied to a reflection model with small specular highlights such as the Phong reflection model. The most serious problem with Gouraud shading occurs when specular highlights are found in the middle of a large polygon. Since these specular highlights are absent from the polygon's vertices and Gouraud shading interpolates based on the vertex colors, the specular highlight will be missing from the polygon's interior. This problem is fixed by Phong shading. Unlike Gouraud shading, which interpolates colors across polygons, in Phong shading, a normal vector is linearly interpolated across the surface of the polygon from the polygon's vertex normals. The surface normal is interpolated and normalized at each pixel and then used in a reflection model, e.g. the Phong reflection model, to obtain the final pixel color.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.