In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model.
Phong shading and the Phong reflection model were developed at the University of Utah by Bui Tuong Phong, who published them in his 1973 Ph.D. dissertation and a 1975 paper. Phong's methods were considered radical at the time of their introduction, but have since become the de facto baseline shading method for many rendering applications. Phong's methods have proven popular due to their generally efficient use of computation time per rendered pixel.
Phong shading improves upon Gouraud shading and provides a better approximation of the shading of a smooth surface. Phong shading assumes a smoothly varying surface normal vector. The Phong interpolation method works better than Gouraud shading when applied to a reflection model with small specular highlights such as the Phong reflection model.
The most serious problem with Gouraud shading occurs when specular highlights are found in the middle of a large polygon. Since these specular highlights are absent from the polygon's vertices and Gouraud shading interpolates based on the vertex colors, the specular highlight will be missing from the polygon's interior. This problem is fixed by Phong shading.
Unlike Gouraud shading, which interpolates colors across polygons, in Phong shading, a normal vector is linearly interpolated across the surface of the polygon from the polygon's vertex normals. The surface normal is interpolated and normalized at each pixel and then used in a reflection model, e.g. the Phong reflection model, to obtain the final pixel color.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry
synthesis, and animation. They design and implement their own interactive graphics program
You will learn about the bonding and structure of several important families of solid state materials. You will gain insight into common synthetic and characterization methods and learn about the appl
Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors.We will focus on images acquired using digital cameras. We will int
3D computer graphics, sometimes called CGI, 3D-CGI or three-dimensional , are graphics that use a three-dimensional representation of geometric data (often Cartesian) that is stored in the computer for the purposes of performing calculations and rendering , usually s but sometimes s. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time. 3D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays.
The Phong reflection model (also called Phong illumination or Phong lighting) is an empirical model of the local illumination of points on a surface designed by the computer graphics researcher Bui Tuong Phong. In 3D computer graphics, it is sometimes referred to as "Phong shading", particularly if the model is used with the interpolation method of the same name and in the context of pixel shaders or other places where a lighting calculation can be referred to as “shading”.
Shading refers to the depiction of depth perception in 3D models (within the field of 3D computer graphics) or illustrations (in visual art) by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light. Shading is used traditionally in drawing for depicting a range of darkness by applying media more densely or with a darker shade for darker areas, and less densely or with a lighter shade for lighter areas.
Physically based rendering is a process for photorealistic digital image synthesis and one of the core problems in computer graphics. It involves simulating the light transport, i.e. the emission, propagation, and scattering of light through a virtual scen ...
Computing light reflection from rough surfaces is an important topic in computer graphics. Reflection models developed based on geometric optics fail to capture wave effects such as diffraction and interference, while existing models based on physical opti ...
We present the Canopy Pavilion, a lightweight shading structure for a social gathering space. The shading surface is realized as a tensioned auxetic linkage membrane, composed of two double-curved anticlastic layers separated by a compression pole. The mem ...