The gene pool is the set of all genes, or genetic information, in any population, usually of a particular species. A large gene pool indicates extensive genetic diversity, which is associated with robust populations that can survive bouts of intense selection. Meanwhile, low genetic diversity (see inbreeding and population bottlenecks) can cause reduced biological fitness and an increased chance of extinction, although as explained by genetic drift new genetic variants, that may cause an increase in the fitness of organisms, are more likely to fix in the population if it is rather small. When all individuals in a population are identical with regard to a particular phenotypic trait, the population is said to be 'monomorphic'. When the individuals show several variants of a particular trait they are said to be polymorphic. The Russian geneticist Alexander Sergeevich Serebrovsky first formulated the concept in the 1920s as genofond (gene fund), a word that was imported to the United States from the Soviet Union by Theodosius Dobzhansky, who translated it into English as "gene pool." Harlan and de Wet (1971) proposed classifying each crop and its related species by gene pools rather than by formal taxonomy. Primary gene pool (GP-1): Members of this gene pool are probably in the same "species" (in conventional biological usage) and can intermate freely. Harlan and de Wet wrote, "Among forms of this gene pool, crossing is easy; hybrids are generally fertile with good chromosome pairing; gene segregation is approximately normal and gene transfer is generally easy.". They also advised subdividing each crop gene pool in two: Subspecies A: Cultivated races Subspecies B: Spontaneous races (wild or weedy) Secondary gene pool (GP-2): Members of this pool are probably normally classified as different species than the crop species under consideration (the primary gene pool). However, these species are closely related and can cross and produce at least some fertile hybrids.
Nicolas Jean Philippe Guex, Christian Iseli