Summary
Laser cooling includes a number of techniques in which atoms, molecules, and small mechanical systems are cooled, often approaching temperatures near absolute zero. Laser cooling techniques rely on the fact that when an object (usually an atom) absorbs and re-emits a photon (a particle of light) its momentum changes. For an ensemble of particles, their thermodynamic temperature is proportional to the variance in their velocity. That is, more homogeneous velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles. The 1997 Nobel Prize in Physics was awarded to Claude Cohen-Tannoudji, Steven Chu, and William Daniel Phillips "for development of methods to cool and trap atoms with laser light". Radiation pressure is the force that electromagnetic radiation exerts on matter. In 1873 Maxwell published his treatise on electromagnetism in which he predicted radiation pressure. The force was experimentally demonstrated for the first time by Lebedev and reported at a conference in Paris in 1900, and later published in more detail in 1901. Following Lebedev's measurements Nichols and Hull also demonstrated the force of radiation pressure in 1901, with a refined measurement reported in 1903. In 1933, Otto Frisch deflected an atomic beam of sodium atoms with light. This was the first realization of radiation pressure acting on a resonant absorber. The introduction of lasers in atomic manipulation experiments acted as the advent of laser cooling proposals in the mid 1970s. Laser cooling was proposed separately in 1975 by two different research groups: Hänsch and Schawlow, and Wineland and Dehmelt. Both proposals outlined a process of slowing heat-based velocity in atoms with "radiative forces." In the paper by Hänsch and Schawlow, the effect of radiation pressure on any object that reflects light is described.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.