Ex vivo (Latin: "out of the living") literally means that which takes place outside an organism. In science, ex vivo refers to experimentation or measurements done in or on tissue from an organism in an external environment with minimal alteration of natural conditions.
A primary advantage of using ex vivo tissues is the ability to perform tests or measurements that would otherwise not be possible or ethical in living subjects. Tissues may be removed in many ways, including in part, as whole organs, or as larger organ systems.
Examples of ex vivo specimen use include:
bioassays;
using cancerous cell lines, like DU145 for prostate cancer, in drug testing of anticancer agents;
measurements of physical, thermal, electrical, mechanical, optical and other tissue properties, especially in various environments that may not be life-sustaining (for example, at extreme pressures or temperatures);
realistic models for surgical procedure development;
investigations into the interaction of different energy types with tissues; or
as phantoms in imaging technique development.
The term ex vivo means that the samples to be tested have been extracted from the organism. The term in vitro (lit. "within the glass") means the samples to be tested are obtained from a repository. In the case of cancer cells, a strain that would produce favorable results, then grown to produce a control sample and the number of samples required for the number of tests. These two terms are not synonymous even though the testing in both cases is "within the glass".
In cell biology, ex vivo procedures often involve living cells or tissues taken from an organism and cultured in a laboratory apparatus, usually under sterile conditions with no alterations, for up to 24 hours to obtain sufficient cells for the experiments. Experiments generally start after 24 hours of incubation. Using living cells or tissue from the same organism are still considered to be ex vivo. One widely performed ex vivo study is the chick chorioallantoic membrane (CAM) assay.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Delves into simulating network dynamics in in silico neuroscience, covering spontaneous and evoked activity, in-vitro and in-vivo simulations, and sensitivity analysis.
In biology and other experimental sciences, an in silico experiment is one performed on computer or via computer simulation. The phrase is pseudo-Latin for 'in silicon' (correct in silicio), referring to silicon in computer chips. It was coined in 1987 as an allusion to the Latin phrases in vivo, in vitro, and in situ, which are commonly used in biology (especially systems biology). The latter phrases refer, respectively, to experiments done in living organisms, outside living organisms, and where they are found in nature.
In vitro (meaning in glass, or in the glass) studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates.
The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties f ...
2023
, ,
Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. I ...
SPRINGER/PLENUM PUBLISHERS2023
Joint range of motion (RoM) analyses are fundamental to our understanding of how an animal moves throughout its ecosystem. Recent technological advances allow for more detailed quantification of this RoM (e.g. including interaction of degrees of freedom) b ...