Summary
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle. In physics and related fields, it is often useful to work with the components of an algebraic object rather than the object itself. An example would be decomposing a vector into a sum of basis vectors weighted by some coefficients such as where is a vector in 3-dimensional Euclidean space, are the usual standard basis vectors in Euclidean space. This is usually necessary for computational purposes, and can often be insightful when algebraic objects represent complex abstractions but their components have concrete interpretations. However, with this identification, one has to be careful to track changes of the underlying basis in which the quantity is expanded; it may in the course of a computation become expedient to change the basis while the vector remains fixed in physical space. More generally, if an algebraic object represents a geometric object, but is expressed in terms of a particular basis, then it is necessary to, when the basis is changed, also change the representation. Physicists will often call this representation of a geometric object a tensor if it transforms under a sequence of linear maps given a linear change of basis (although confusingly others call the underlying geometric object which hasn't changed under the coordinate transformation a "tensor", a convention this article strictly avoids).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (18)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
MATH-213: Differential geometry
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
Show more