In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.
In physics and related fields, it is often useful to work with the components of an algebraic object rather than the object itself. An example would be decomposing a vector into a sum of basis vectors weighted by some coefficients such as
where is a vector in 3-dimensional Euclidean space, are the usual standard basis vectors in Euclidean space. This is usually necessary for computational purposes, and can often be insightful when algebraic objects represent complex abstractions but their components have concrete interpretations. However, with this identification, one has to be careful to track changes of the underlying basis in which the quantity is expanded; it may in the course of a computation become expedient to change the basis while the vector remains fixed in physical space. More generally, if an algebraic object represents a geometric object, but is expressed in terms of a particular basis, then it is necessary to, when the basis is changed, also change the representation. Physicists will often call this representation of a geometric object a tensor if it transforms under a sequence of linear maps given a linear change of basis (although confusingly others call the underlying geometric object which hasn't changed under the coordinate transformation a "tensor", a convention this article strictly avoids).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space.
In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves the (pseudo-)Riemannian metric and is torsion-free. The fundamental theorem of Riemannian geometry states that there is a unique connection which satisfies these properties. In the theory of Riemannian and pseudo-Riemannian manifolds the term covariant derivative is often used for the Levi-Civita connection.
A rank-adaptive integrator for the approximate solution of high-order tensor differential equations by tree tensor networks is proposed and analyzed. In a recursion from the leaves to the root, the integrator updates bases and then evolves connection tenso ...
A geometric method of lattice reduction based on cycles of directional and hyperplanar shears is presented. The deviation from cubicity at each step of the reduction is evaluated by a parameter called 'basis rhombicity' which is the sum of the absolute val ...
INT UNION CRYSTALLOGRAPHY2022
Tensor trains are a versatile tool to compress and work with high-dimensional data and functions. In this work we introduce the streaming tensor train approximation (STTA), a new class of algorithms for approximating a given tensor ' in the tensor train fo ...