**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Category# Differential geometry

Summary

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.
Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structure. For example, in Riemannian geometry distances and angles are specified, in symplectic geometry volumes may be computed, in conformal geometry only angles are specified, and in gauge theory certain fields are given over the space. Differential geometry is closely related to, and is sometimes taken to include, differential topology, which concerns itself with properties of differentiable manifolds that do not rely on any additional geometric structure (see that article for more discussion on the distinction between the two subjects). Differential geometry is also related to the geometric aspects of the theory of differential equations, otherwise known as geometric analysis.
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (23)

Related concepts (78)

Related MOOCs (1)

Related people (2)

Related publications (31)

Related lectures (346)

MATH-213: Differential geometry

Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.

MATH-512: Optimization on manifolds

We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

Related categories (93)

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force.

In differential geometry, especially the theory of space curves, the Darboux vector is the angular velocity vector of the Frenet frame of a space curve. It is named after Gaston Darboux who discovered it. It is also called angular momentum vector, because it is directly proportional to angular momentum. In terms of the Frenet-Serret apparatus, the Darboux vector ω can be expressed as and it has the following symmetrical properties: which can be derived from Equation (1) by means of the Frenet-Serret theorem (or vice versa).

In mathematics — specifically, in Riemannian geometry — geodesic convexity is a natural generalization of convexity for sets and functions to Riemannian manifolds. It is common to drop the prefix "geodesic" and refer simply to "convexity" of a set or function. Let (M, g) be a Riemannian manifold. A subset C of M is said to be a geodesically convex set if, given any two points in C, there is a unique minimizing geodesic contained within C that joins those two points. Let C be a geodesically convex subset of M.

,

Differential Forms on Manifolds

Introduces differential forms on manifolds, covering tangent bundles and intersection pairings.

Linear Shell Theory: Equilibrium and Energy

Covers the expression of the Kirchhoff-Saint Venant energy in a covariant setting and explores equilibrium equations for spherical shells and linear shell theory.

Shells I

Covers linear pressure vessels, thin shells, and critical buckling pressure, emphasizing the dimensional reduction from 3D to 2D.

Nicolas Boumal, Christopher Arnold Criscitiello

We describe the first gradient methods on Riemannian manifolds to achieve accelerated rates in the non-convex case. Under Lipschitz assumptions on the Riemannian gradient and Hessian of the cost funct

Vector analysis

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations.

Euclidean geometry

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

Algebraic topology

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups.

In this article, motivated by the study of symplectic structures on manifolds with boundary and the systematic study of b-symplectic manifolds started in Guillemin, Miranda, and Pires Adv. Math. 264 (

Michael Christoph Gastpar, Alper Köse, Ahmet Arda Atalik

The conditional mean is a fundamental and important quantity whose applications include the theories of estimation and rate-distortion. It is also notoriously difficult to work with. This paper establ