In photography and cinematography, a normal lens is a lens that reproduces a field of view that appears "natural" to a human observer. In contrast, depth compression and expansion with shorter or longer focal lengths introduces noticeable, and sometimes disturbing, distortion. Photographic technology employs different physical methods from the human eye in order to capture images. Thus, manufacturing optics which produce images that appear natural to human vision is problematic. The eye has a nominal focal length of approximately 17mm, but it varies with accommodation. The nature of human binocular vision, which uses two lenses instead of a single one, and post-processing by the cortex is very different from the process of making and rendering a photograph, video or film. The structure of the human eye has a concave retina, rather than a flat sensor. This produces effects observed by Abraham Bosse, who in his 1665 illustration 'To prove that one can neither define nor paint as the eye sees', demonstrates how the circular projection of the visual cone conflicts with the flat plane of the picture surface, prompting continued debate over whether straight lines in the world are perceived as straight or curved in a form of barrel distortion, and whether they should be depicted as straight in the picture plane. Helmholtz's (1910) pin-cushioned chessboard figure demonstrates that straight lines in the world are not always perceived as straight and, conversely, that curved lines in the world can sometimes be seen as straight. The retina also has variable sensitivity across its wider-than-180° horizontal field-of-view and ranging in resolution in peripheral or foveal vision. Given the lack of a clear correlation between human vision and camera lenses, explanations in photography texts to account for this rule's efficacy tend to gloss over or merely restate the phenomenon, claiming that using 50mm lenses "approximates the angle of view and magnification of human vision", or that "the normal focal length for a given format most closely approximates human sight, and projects an image with the least distortion and compression of space from foreground to background", or that "the perspective is correct and we are most comfortable with a picture captured with a 50-mm lens".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-352: Introduction to microscopy + Laboratory work
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Related lectures (20)
Image Acquisition
Covers the basics of image acquisition, including optical devices, resolution factors, lens distortions, and sensor technologies.
Optical Systems: Matrices and Lenses
Covers the 2x2 transfer matrix for optical systems and the characterization using height and angle parameters, along with lens systems and entrance pupils.
Electron Microscopy Components
Covers electron microscope components, vacuum systems, aberrations, detectors, and specimen holders.
Show more
Related publications (32)

Laser-based manufacturing of freeform glass micro-optics through topological transformation

Samuel Youcef Benketaf

Glass has been the material of choice for making optical elements, in large part due to its intrinsic properties: a temperature-dependent viscosity, which enables shaping the material into a broad variety of functional and artistic glassware. Silica glass ...
EPFL2024

The impact of human expert visual inspection on the discovery of strong gravitational lenses

Frédéric Courbin, Benjamin Yvan Alexandre Clement, Martin Raoul Robert Millon, Eric Gérard Guy Paic, Hung-Hsu Chan, Karina Alexandra Rojas Olate, Rémy Elie Joseph, Elodie Marie Charlène Savary, Yue Pan

We investigate the ability of human 'expert' classifiers to identify strong gravitational lens candidates in Dark Energy Survey like imaging. We recruited a total of 55 people that completed more than 25 per cent of the project. During the classification t ...
OXFORD UNIV PRESS2023

Halo Mass-concentration Relation at the High-mass End

Jean-Paul Richard Kneib, Huanyuan Shan, Ginevra Favole

The concentration-mass (c-M) relation encodes key information about the assembly history of dark matter halos. However, its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of the h ...
IOP Publishing Ltd2021
Show more
Related concepts (14)
Camera lens
A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or . There is no major difference in principle between a lens used for a still camera, a video camera, a telescope, a microscope, or other apparatus, but the details of design and construction are different.
Wide-angle lens
In photography and cinematography, a wide-angle lens refers to a lens whose focal length is substantially smaller than the focal length of a normal lens for a given film plane. This type of lens allows more of the scene to be included in the photograph, which is useful in architectural, interior, and landscape photography where the photographer may not be able to move farther from the scene to photograph it.
Telephoto lens
A telephoto lens, in photography and cinematography, is a specific type of a long-focus lens in which the physical length of the lens is shorter than the focal length. This is achieved by incorporating a special lens group known as a telephoto group that extends the light path to create a long-focus lens in a much shorter overall design. The angle of view and other effects of long-focus lenses are the same for telephoto lenses of the same specified focal length.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.