Summary
A telephoto lens, in photography and cinematography, is a specific type of a long-focus lens in which the physical length of the lens is shorter than the focal length. This is achieved by incorporating a special lens group known as a telephoto group that extends the light path to create a long-focus lens in a much shorter overall design. The angle of view and other effects of long-focus lenses are the same for telephoto lenses of the same specified focal length. Long-focal-length lenses are often informally referred to as telephoto lenses, although this is technically incorrect: a telephoto lens specifically incorporates the telephoto group. Telephoto lenses are sometimes broken into the further sub-types of short telephoto (85–135 mm in 35 mm film format), medium telephoto: (135–300 mm in 35 mm film format) and super telephoto (over 300 mm in 35 mm film format). In contrast to a telephoto lens, for any given focal length a simple lens of non-telephoto design is constructed from one lens (which can, to minimize aberrations, consist of several elements to form an achromatic lens). To focus on an object at infinity, the distance from this single lens to focal plane of the camera (where the sensor or film is respectively) has to be adjusted to this focal length. For example, given a focal length of 500 mm, the distance between lens and focal plane is 500 mm. The farther the focal length is increased, the more the physical length of such a simple lens makes it unwieldy. But such simple lenses are not telephoto lenses, no matter how extreme the focal length – they are known as long-focus lenses. While the optical centre of a simple ("non-telephoto") lens is within the construction, the telephoto lens moves the optical centre in front of the construction. While the length of a long-focus lens approximates its focal length, a telephoto lens manages to be shorter than its focal length. E.g., a telephoto lens might have a focal length of 400 mm, while it is shorter than that. A telephoto lens works by having the outermost (i.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (4)
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Transmission Electron Microscopy for Materials Sciences
Learn about the fundamentals of transmission electron microscopy in materials sciences: you will be able to understand papers where TEM has been used and have the necessary theoretical basis for takin
Selected chapters form winterschool on multi-scale brain
Understanding the brain requires an integrated understan­ding of different scales of organisation of the brain. This Massive Open Online Course (MOOC) will take the you through the latest data, models
Show more