In fluid mechanics, apparent viscosity (sometimes denoted η) is the shear stress applied to a fluid divided by the shear rate:
For a Newtonian fluid, the apparent viscosity is constant, and equal to the Newtonian viscosity of the fluid, but for non-Newtonian fluids, the apparent viscosity depends on the shear rate. Apparent viscosity has the SI derived unit Pa·s (Pascal-second), but the centipoise is frequently used in practice: (1 mPa·s = 1 cP).
A single viscosity measurement at a constant speed in a typical viscometer is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments is not identical. An apparent viscosity that is reported without the shear rate or information about the instrument and settings (e.g. speed and spindle type for a rotational viscometer) is meaningless.
Multiple measurements of apparent viscosity at different, well-defined shear rates, can give useful information about the non-Newtonian behaviour of a fluid, and allow it to be modeled.
In many non-Newtonian fluids, the shear stress due to viscosity, , can be modeled by
where
k is the consistency index
n is the flow behavior index
du/dy is the shear rate, with velocity u and position y
These fluids are called power-law fluids.
To ensure that has the same sign as du/dy, this is often written as
where the term
gives the apparent viscosity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Life has emerged on our planet from physical principles such as molecular self-organization, thermodynamics, stochastics and iterative refinement. This course will introduce the physical methods to st
Explores boundary layer concepts, viscosity impact, drag and lift forces, and dimensional pipe flow analysis.
Explores viscosity in Newtonian fluids, discussing shear stress, shear strain rate, and compressibility, with examples of shear thickening and shear thinning behaviors.
Explores the mechanics of coiling honey and how different parameters affect the coil size.
In this work we consider solutions to stochastic partial differential equations with transport noise, which are known to converge, in a suitable scaling limit, to solution of the corresponding deterministic PDE with an additional viscosity term. Large devi ...
Fluidic actuation enables movement in a wide range of mechanical systems, from simple laboratory devices to more complex industrial machinery. Fluids are used to generate motion of mechanical pieces. The term "fluids" encompasses two types of technologies: ...
EPFL2023
From a circular economyperspective, one-pot strategies for theisolation of cellulose nanomaterials at a high yield and with multifunctionalproperties are attractive. Here, the effects of lignin content (bleachedvs unbleached softwood kraft pulp) and sulfur ...