In statistical decision theory, an admissible decision rule is a rule for making a decision such that there is no other rule that is always "better" than it (or at least sometimes better and never worse), in the precise sense of "better" defined below. This concept is analogous to Pareto efficiency.
Define sets , and , where are the states of nature, the possible observations, and the actions that may be taken. An observation of is distributed as and therefore provides evidence about the state of nature . A decision rule is a function , where upon observing , we choose to take action .
Also define a loss function , which specifies the loss we would incur by taking action when the true state of nature is . Usually we will take this action after observing data , so that the loss will be . (It is possible though unconventional to recast the following definitions in terms of a utility function, which is the negative of the loss.)
Define the risk function as the expectation
Whether a decision rule has low risk depends on the true state of nature . A decision rule dominates a decision rule if and only if for all , and the inequality is strict for some .
A decision rule is admissible (with respect to the loss function) if and only if no other rule dominates it; otherwise it is inadmissible. Thus an admissible decision rule is a maximal element with respect to the above partial order.
An inadmissible rule is not preferred (except for reasons of simplicity or computational efficiency), since by definition there is some other rule that will achieve equal or lower risk for all . But just because a rule is admissible does not mean it is a good rule to use. Being admissible means there is no other single rule that is always as good or better – but other admissible rules might achieve lower risk for most that occur in practice. (The Bayes risk discussed below is a way of explicitly considering which occur in practice.)
Bayes estimator#Admissibility
Let be a probability distribution on the states of nature.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Machine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist-inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. The primary formulation of frequentism stems from the presumption that statistics could be perceived to have been a probabilistic frequency.
A prior probability distribution of an uncertain quantity, often simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable.
We consider the problem of information aggregation in federated decision making, where a group of agents collaborate to infer the underlying state of nature without sharing their private data with the central processor or each other. We analyze the non-Bay ...
Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to sma ...
Stochastic programming and distributionally robust optimization seek deterministic decisions that optimize a risk measure, possibly in view of the most adverse distribution in an ambiguity set. We investigate under which circumstances such deterministic de ...
Explores the Decision Theory Framework in Statistical Theory, viewing statistics as a random game with key concepts like admissibility, minimax rules, and Bayes rules.