Sexing Guppy Fish: Bayesian Inference and Decision Rules
Graph Chatbot
Description
This lecture covers the sexing of guppy fish using Bayesian inference and decision rules based on fish size, with a focus on the likelihood ratio, prior distributions, and threshold values for accurate sex prediction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Proident ad culpa enim eu esse nulla ex sunt qui eu sint. Enim labore eiusmod elit velit amet fugiat ea qui magna sunt nisi labore non amet. Minim fugiat veniam sit amet tempor sunt cupidatat est sit ipsum adipisicing deserunt.
Veniam reprehenderit incididunt velit irure sit sunt. Quis dolor in nostrud magna minim elit ut consequat. Quis do culpa ea veniam adipisicing consequat.
Cillum minim nulla laborum reprehenderit magna sit qui nulla irure aliquip. Sint fugiat aute et commodo. Consequat fugiat non tempor consectetur esse. Ipsum aliqua magna officia in aliquip cupidatat occaecat do sint dolore do ex. Dolore veniam veniam officia ipsum ut pariatur incididunt nulla proident non.
Introduces Bayesian estimation, covering classical versus Bayesian inference, conjugate priors, MCMC methods, and practical examples like temperature estimation and choice modeling.