OpenCL (Open Computing Language) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware accelerators. OpenCL specifies programming languages (based on C99, C++14 and C++17) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. OpenCL provides a standard interface for parallel computing using task- and data-based parallelism. OpenCL is an open standard maintained by the non-profit technology consortium Khronos Group. Conformant implementations are available from Altera, AMD, ARM, Creative, IBM, Imagination, Intel, Nvidia, Qualcomm, Samsung, Vivante, Xilinx, and ZiiLABS. OpenCL views a computing system as consisting of a number of compute devices, which might be central processing units (CPUs) or "accelerators" such as graphics processing units (GPUs), attached to a host processor (a CPU). It defines a C-like language for writing programs. Functions executed on an OpenCL device are called "kernels". A single compute device typically consists of several compute units, which in turn comprise multiple processing elements (PEs). A single kernel execution can run on all or many of the PEs in parallel. How a compute device is subdivided into compute units and PEs is up to the vendor; a compute unit can be thought of as a "core", but the notion of core is hard to define across all the types of devices supported by OpenCL (or even within the category of "CPUs"), and the number of compute units may not correspond to the number of cores claimed in vendors' marketing literature (which may actually be counting SIMD lanes). In addition to its C-like programming language, OpenCL defines an application programming interface (API) that allows programs running on the host to launch kernels on the compute devices and manage device memory, which is (at least conceptually) separate from host memory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (44)
Related concepts (51)
Adreno
Adreno is a series of graphics processing unit (GPU) semiconductor intellectual property cores developed by Qualcomm and used in many of their SoCs. Adreno is an integrated graphics processing unit (GPU) within Qualcomm's Snapdragon applications processors, that was jointly developed by ATI Technologies in conjunction with Qualcomm's preexisting "QShader" GPU architecture, and coalesced into a single family of GPUs that rebranded as Adreno in 2008, just prior to AMD's mobile division being sold to Qualcomm in January of 2009 for $65M.
Tesla (microarchitecture)
Tesla is the codename for a GPU microarchitecture developed by Nvidia, and released in 2006, as the successor to Curie microarchitecture. It was named after the pioneering electrical engineer Nikola Tesla. As Nvidia's first microarchitecture to implement unified shaders, it was used with GeForce 8 Series, GeForce 9 Series, GeForce 100 Series, GeForce 200 Series, and GeForce 300 Series of GPUs collectively manufactured in 90 nm, 80 nm, 65 nm, 55 nm, and 40 nm.
General-purpose computing on graphics processing units
General-purpose computing on graphics processing units (GPGPU, or less often GPGP) is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.