Summary
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous function (topology) and Discontinuous linear map Bounded operator Suppose that is a linear operator between two topological vector spaces (TVSs). The following are equivalent: is continuous. is continuous at some point is continuous at the origin in If is locally convex then this list may be extended to include: for every continuous seminorm on there exists a continuous seminorm on such that If and are both Hausdorff locally convex spaces then this list may be extended to include: is weakly continuous and its transpose maps equicontinuous subsets of to equicontinuous subsets of If is a sequential space (such as a pseudometrizable space) then this list may be extended to include: is sequentially continuous at some (or equivalently, at every) point of its domain. If is pseudometrizable or metrizable (such as a normed or Banach space) then we may add to this list: is a bounded linear operator (that is, it maps bounded subsets of to bounded subsets of ). If is seminormable space (such as a normed space) then this list may be extended to include: maps some neighborhood of 0 to a bounded subset of If and are both normed or seminormed spaces (with both seminorms denoted by ) then this list may be extended to include: for every there exists some such that If and are Hausdorff locally convex spaces with finite-dimensional then this list may be extended to include: the graph of is closed in Throughout, is a linear map between topological vector spaces (TVSs). Bounded subset Bounded set (topological vector space) The notion of a "bounded set" for a topological vector space is that of being a von Neumann bounded set.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (35)
MATH-305: Introduction to partial differential equations
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
MATH-502: Distribution and interpolation spaces
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Show more
Related lectures (322)
Operator Product Expansion
Explores Operator Product Expansion (OPE) and its role in Conformal Bootstrap.
Approximation Landau: Ising Model
Explores the Landau approximation applied to the Ising model in statistical physics.
Graph Sketching: Connected Components
Covers the concept of graph sketching with a focus on connected components.
Show more
Related publications (144)

Dynamic Voxels Based on Ego-Conditioned Prediction: An Integrated Spatio-Temporal Framework for Motion Planning

Alexandre Massoud Alahi, Ting Zhang, Yi Yang

Prediction is a vital component of motion planning for autonomous vehicles (AVs). By reasoning about the possible behavior of other target agents, the ego vehicle (EV) can navigate safely, efficiently, and politely. However, most of the existing work overl ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Rotating spokes, potential hump and modulated ionization in radio frequency magnetron discharges

Haomin Sun, Liang Xu

In this work, the transition from the gradient drift instability (GDI) into an m = 1 rotating spoke in the radio frequency magnetron discharge was studied by means of the two-dimensional axial-azimuthal (z - y) particle-in-cell/Monte Carlo collision method ...
Bristol2023

The hunt for the Karman 'constant' revisited

Peter Monkewitz

The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on th ...
CAMBRIDGE UNIV PRESS2023
Show more
Related concepts (20)
Bornological space
In mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.
Dual system
In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map . Duality theory, the study of dual systems, is part of functional analysis. It is separate and distinct to Dual-system Theory in psychology. Pairings A or pair over a field is a triple which may also be denoted by consisting of two vector spaces and over (which this article assumes is the field either of real numbers or the complex numbers ).
Metrizable topological vector space
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.
Show more
Related MOOCs (19)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more