In observational astronomy, culmination is the passage of a celestial object (such as the Sun, the Moon, a planet, a star, constellation or a deep-sky object) across the observer's local meridian. These events were also known as meridian transits, used in timekeeping and navigation, and measured precisely using a transit telescope.
During each day, every celestial object appears to move along a circular path on the celestial sphere due to the Earth's rotation creating two moments when it crosses the meridian. Except at the geographic poles, any celestial object passing through the meridian has an upper culmination, when it reaches its highest point (the moment when it is nearest to the Zenith), and nearly twelve hours later, is followed by a lower culmination, when it reaches its lowest point (nearest to the Nadir). The time of culmination (when the object culminates) is often used to mean upper culmination.
An object's altitude (A) in degrees at its upper culmination is equal to 90 minus the observer's latitude (L) plus the object's declination (δ): A = 90° − L + δ.
Three cases are dependent on the observer's latitude (L) and the declination (δ) of the celestial object:
The object is above the horizon even at its lower culmination; i.e. if | δ + L | > 90° (i.e. if in absolute value the declination is more than the colatitude, in the corresponding hemisphere)
The object is below the horizon even at its upper culmination; i.e. if | δ − L | > 90° (i.e. if in absolute value the declination is more than the colatitude, in the opposite hemisphere)
The upper culmination is above and the lower below the horizon, so the body is observed to rise and set daily; in the other cases (i.e. if in absolute value the declination is less than the colatitude)
The third case applies for objects in a part of the full sky equal to the cosine of the latitude (at the equator it applies for all objects, because the sky turns around the horizontal north–south line; at the poles it applies for none, because the sky turns around the vertical line).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes 365.256 days (1 sidereal year), during which time Earth has traveled 940 million km (584 million mi). Ignoring the influence of other Solar System bodies, Earth's orbit, also known as Earth's revolution, is an ellipse with the Earth-Sun barycenter as one focus with a current eccentricity of 0.0167.
A season is a division of the year based on changes in weather, ecology, and the number of daylight hours in a given region. On Earth, seasons are the result of the axial parallelism of Earth's tilted orbit around the Sun. In temperate and polar regions, the seasons are marked by changes in the intensity of sunlight that reaches the Earth's surface, variations of which may cause animals to undergo hibernation or to migrate, and plants to be dormant.
In astronomy, the meridian is the great circle passing through the celestial poles, as well as the zenith and nadir of an observer's location. Consequently, it contains also the north and south points on the horizon, and it is perpendicular to the celestial equator and horizon. Meridians, celestial and geographical, are determined by the pencil of planes passing through the Earth's rotation axis. For a location not at a geographical pole, there is a unique meridian plane in this axial-pencil through that location.
The Unités d’Habitation designed by Le Corbusier and André Wogenscky represent an exceptional moment in the development of the culture of housing in the 20th century1. Five examples of them were built – at Marseilles (1945-1952), Rezé (1948-1955), Berlin ( ...