Category

Observational astronomy

Summary
Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments. As a science, the study of astronomy is somewhat hindered in that direct experiments with the properties of the distant universe are not possible. However, this is partly compensated by the fact that astronomers have a vast number of visible examples of stellar phenomena that can be examined. This allows for observational data to be plotted on graphs, and general trends recorded. Nearby examples of specific phenomena, such as variable stars, can then be used to infer the behavior of more distant representatives. Those distant yardsticks can then be employed to measure other phenomena in that neighborhood, including the distance to a galaxy. Galileo Galilei turned a telescope to the heavens and recorded what he saw. Since that time, observational astronomy has made steady advances with each improvement in telescope technology. A traditional division of observational astronomy is based on the region of the electromagnetic spectrum observed: Radio astronomy detects radiation of millimetre to decametre wavelength. The receivers are similar to those used in radio broadcast transmission but much more sensitive. See also Radio telescopes. Infrared astronomy deals with the detection and analysis of infrared radiation (this typically refers to wavelengths longer than the detection limit of silicon solid-state detectors, about 1 μm wavelength). The most common tool is the reflecting telescope, but with a detector sensitive to infrared wavelengths. Space telescopes are used at certain wavelengths where the atmosphere is opaque, or to eliminate noise (thermal radiation from the atmosphere).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.