Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.
As a science, the study of astronomy is somewhat hindered in that direct experiments with the properties of the distant universe are not possible. However, this is partly compensated by the fact that astronomers have a vast number of visible examples of stellar phenomena that can be examined. This allows for observational data to be plotted on graphs, and general trends recorded. Nearby examples of specific phenomena, such as variable stars, can then be used to infer the behavior of more distant representatives. Those distant yardsticks can then be employed to measure other phenomena in that neighborhood, including the distance to a galaxy.
Galileo Galilei turned a telescope to the heavens and recorded what he saw. Since that time, observational astronomy has made steady advances with each improvement in telescope technology.
A traditional division of observational astronomy is based on the region of the electromagnetic spectrum observed:
Radio astronomy detects radiation of millimetre to decametre wavelength. The receivers are similar to those used in radio broadcast transmission but much more sensitive. See also Radio telescopes.
Infrared astronomy deals with the detection and analysis of infrared radiation (this typically refers to wavelengths longer than the detection limit of silicon solid-state detectors, about 1 μm wavelength). The most common tool is the reflecting telescope, but with a detector sensitive to infrared wavelengths. Space telescopes are used at certain wavelengths where the atmosphere is opaque, or to eliminate noise (thermal radiation from the atmosphere).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
A circumpolar star is a star that, as viewed from a given latitude on Earth, never sets below the horizon due to its apparent proximity to one of the celestial poles. Circumpolar stars are therefore visible from said location toward the nearest pole for the entire night on every night of the year (and would be continuously visible throughout the day too, were they not overwhelmed by the Sun's glare). Others are called seasonal stars. All circumpolar stars lie within a circumpolar circle whose size is determined by the observer's latitude.
Lunar Laser Ranging (LLR) is the practice of measuring the distance between the surfaces of the Earth and the Moon using laser ranging. The distance can be calculated from the round-trip time of laser light pulses travelling at the speed of light, which are reflected back to Earth by the Moon's surface or by one of five retroreflectors installed on the Moon. Three were installed during the Apollo program (11, 14, and 15) and two on the Lunokhod 1 and 2 missions.
The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system. In other words, the celestial equator is an abstract projection of the terrestrial equator into outer space. Due to Earth's axial tilt, the celestial equator is currently inclined by about 23.44° with respect to the ecliptic (the plane of Earth's orbit), but has varied from about 22.0° to 24.
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules. The atmosphere of Earth is composed of nitrogen (78 %), oxygen (21 %), argon (0.
A star is an astronomical object comprising a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations.
The history of science covers the development of science from ancient times to the present. It encompasses all three major branches of science: natural, social, and formal. Science's earliest roots can be traced to Ancient Egypt and Mesopotamia around 3000 to 1200 BCE. These civilizations' contributions to mathematics, astronomy, and medicine influenced later Greek natural philosophy of classical antiquity, wherein formal attempts were made to provide explanations of events in the physical world based on natural causes.
Explores sky surveys in the radio universe, covering observations, coordinate systems, all-sky surveys, and mapping galaxies.
Covers gnomonics, the measurement of time using shadows and the relationship with latitude and solar time.
Explores the inequality of seasons by examining the Earth's orbit and the causes of the seasons in architecture and gnomonics.
We report on the mountain top observation of three terrestrial gamma-ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European ...
2024
,
We update the publicly available weak lensing shear measurement algorithm pyRRG for the JWST, and apply it to UNCOVER DR1 imaging of galaxy cluster Abell 2744. At short wavelengths (
Delayed 'pair-echo' signal from interactions of very-high-energy gamma rays in the intergalactic medium can be used for the detection of the intergalactic magnetic field (IGMF). We used the data of the Fermi/LAT telescope coupled with LHAASO observatory me ...