Concept

Culmination

Summary
In observational astronomy, culmination is the passage of a celestial object (such as the Sun, the Moon, a planet, a star, constellation or a deep-sky object) across the observer's local meridian. These events were also known as meridian transits, used in timekeeping and navigation, and measured precisely using a transit telescope. During each day, every celestial object appears to move along a circular path on the celestial sphere due to the Earth's rotation creating two moments when it crosses the meridian. Except at the geographic poles, any celestial object passing through the meridian has an upper culmination, when it reaches its highest point (the moment when it is nearest to the Zenith), and nearly twelve hours later, is followed by a lower culmination, when it reaches its lowest point (nearest to the Nadir). The time of culmination (when the object culminates) is often used to mean upper culmination. An object's altitude (A) in degrees at its upper culmination is equal to 90 minus the observer's latitude (L) plus the object's declination (δ): A = 90° − L + δ. Three cases are dependent on the observer's latitude (L) and the declination (δ) of the celestial object: The object is above the horizon even at its lower culmination; i.e. if | δ + L | > 90° (i.e. if in absolute value the declination is more than the colatitude, in the corresponding hemisphere) The object is below the horizon even at its upper culmination; i.e. if | δ − L | > 90° (i.e. if in absolute value the declination is more than the colatitude, in the opposite hemisphere) The upper culmination is above and the lower below the horizon, so the body is observed to rise and set daily; in the other cases (i.e. if in absolute value the declination is less than the colatitude) The third case applies for objects in a part of the full sky equal to the cosine of the latitude (at the equator it applies for all objects, because the sky turns around the horizontal north–south line; at the poles it applies for none, because the sky turns around the vertical line).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.