In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.
The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent. Then according to a general principle, Grothendieck's relative point of view, the theory of Jean-Pierre Serre was extended to a proper morphism; Serre duality was recovered as the case of the morphism of a non-singular projective variety (or complete variety) to a point. The resulting theory is now sometimes called Serre–Grothendieck–Verdier duality, and is a basic tool in algebraic geometry. A treatment of this theory, Residues and Duality (1966) by Robin Hartshorne, became a reference. One concrete spin-off was the Grothendieck residue.
To go beyond proper morphisms, as for the versions of Poincaré duality that are not for closed manifolds, requires some version of the compact support concept. This was addressed in SGA2 in terms of local cohomology, and Grothendieck local duality; and subsequently. The Greenlees–May duality, first formulated in 1976 by Ralf Strebel and in 1978 by Eben Matlis, is part of the continuing consideration of this area.
While Serre duality uses a line bundle or invertible sheaf as a dualizing sheaf, the general theory (it turns out) cannot be quite so simple. (More precisely, it can, but at the cost of imposing the Gorenstein ring condition.) In a characteristic turn, Grothendieck reformulated general coherent duality as the existence of a right adjoint functor , called twisted or , to a higher functor .
Higher direct images are a sheafified form of sheaf cohomology in this case with proper (compact) support; they are bundled up into a single functor by means of the formulation of homological algebra (introduced with this case in mind).