In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory.
The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent. Then according to a general principle, Grothendieck's relative point of view, the theory of Jean-Pierre Serre was extended to a proper morphism; Serre duality was recovered as the case of the morphism of a non-singular projective variety (or complete variety) to a point. The resulting theory is now sometimes called Serre–Grothendieck–Verdier duality, and is a basic tool in algebraic geometry. A treatment of this theory, Residues and Duality (1966) by Robin Hartshorne, became a reference. One concrete spin-off was the Grothendieck residue.
To go beyond proper morphisms, as for the versions of Poincaré duality that are not for closed manifolds, requires some version of the compact support concept. This was addressed in SGA2 in terms of local cohomology, and Grothendieck local duality; and subsequently. The Greenlees–May duality, first formulated in 1976 by Ralf Strebel and in 1978 by Eben Matlis, is part of the continuing consideration of this area.
While Serre duality uses a line bundle or invertible sheaf as a dualizing sheaf, the general theory (it turns out) cannot be quite so simple. (More precisely, it can, but at the cost of imposing the Gorenstein ring condition.) In a characteristic turn, Grothendieck reformulated general coherent duality as the existence of a right adjoint functor , called twisted or , to a higher functor .
Higher direct images are a sheafified form of sheaf cohomology in this case with proper (compact) support; they are bundled up into a single functor by means of the formulation of homological algebra (introduced with this case in mind).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
In algebraic geometry, local cohomology is an algebraic analogue of relative cohomology. Alexander Grothendieck introduced it in seminars in Harvard in 1961 written up by , and in 1961-2 at IHES written up as SGA2 - , republished as . Given a function (more generally, a section of a quasicoherent sheaf) defined on an open subset of an algebraic variety (or scheme), local cohomology measures the obstruction to extending that function to a larger domain.
thumb|Dual d'un cube : un octaèdre. En mathématiques, le mot dualité a de nombreuses utilisations. Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout objet de on associe un autre objet de . On dit que est le dual de et que est le primal de . Si (par = on peut sous-entendre des relations d'isomorphies complexes), on dit que est autodual. Dans de nombreux cas de dualité, le dual du dual est le primal. Ainsi, par exemple, le concept de complémentaire d'un ensemble pourrait être vu comme le premier des concepts de dualité.
In mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism.
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
Palaiseau2024
Motivated by ever-increasing soil degradation and artificialization due to past and present urban growth dynamics, the current trend of spatial planning policies at the European and Swiss levels is promoting increased soil protection, by avoiding new devel ...
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...