**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Twisting structures and morphisms up to strong homotopy

Abstract

We define twisted composition products of symmetric sequences via classifying morphisms rather than twisting cochains. Our approach allows us to establish an adjunction that simultaneously generalizes a classic one for algebras and coalgebras, and the bar-cobar adjunction for quadratic operads. The comonad associated to this adjunction turns out to be, in several cases, a standard Koszul construction. The associated Kleisli categories are the "strong homotopy" morphism categories. In an appendix, we study the co-ring associated to the canonical morphism of cooperads , which is exactly the two-sided Koszul resolution of the associative operad , also known as the Alexander-Whitney co-ring.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (5)

Morphism

In mathematics, particularly in , a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in linear algebra, linear transformations; in group theory, group homomorphisms; in analysis and topology, continuous functions, and so on.

Homotopy

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from ὁμός "same, similar" and τόπος "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (həˈmɒtəpiː, ; ˈhoʊmoʊˌtoʊpiː, ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces.

Function composition

In mathematics, function composition is an operation ∘ that takes two functions f and g, and produces a function h = g ∘ f such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in domain X to g(f(x)) in codomain Z. Intuitively, if z is a function of y, and y is a function of x, then z is a function of x.