In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data. The amount of data reduction possible using lossy compression is much higher than using lossless techniques. Well-designed lossy compression technology often reduces file sizes significantly before degradation is noticed by the end-user. Even when noticeable by the user, further data reduction may be desirable (e.g., for real-time communication or to reduce transmission times or storage needs). The most widely used lossy compression algorithm is the discrete cosine transform (DCT), first published by Nasir Ahmed, T. Natarajan and K. R. Rao in 1974. Lossy compression is most commonly used to compress multimedia data (audio, video, and s), especially in applications such as streaming media and internet telephony. By contrast, lossless compression is typically required for text and data files, such as bank records and text articles. It can be advantageous to make a master lossless file which can then be used to produce additional copies from. This allows one to avoid basing new compressed copies off of a lossy source file, which would yield additional artifacts and further unnecessary information loss. It is possible to compress many types of digital data in a way that reduces the size of a needed to store it, or the bandwidth needed to transmit it, with no loss of the full information contained in the original file. A picture, for example, is converted to a digital file by considering it to be an array of dots and specifying the color and brightness of each dot.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
COM-404: Information theory and coding
The mathematical principles of communication that govern the compression and transmission of data and the design of efficient methods of doing so.
CS-119(a): Information, Computation, Communication
D'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects liés aux systèmes: ordi
CS-119(k): Information, Computation, Communication
D'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects liés aux systèmes: ordi
Show more
Related lectures (254)
Quantum Information
Explores the CHSH operator, self-testing, eigenstates, and quantifying randomness in quantum systems.
Data Compression and Shannon's Theorem: Recap
Explores entropy, compression algorithms, and optimal coding methods for data compression.
Compression: Prefix-Free Codes
Explains prefix-free codes for efficient data compression and the significance of uniquely decodable codes.
Show more
Related publications (479)

Subjective performance evaluation of bitrate allocation strategies for MPEG and JPEG Pleno point cloud compression

Touradj Ebrahimi, Michela Testolina, Davi Nachtigall Lazzarotto

The recent rise in interest in point clouds as an imaging modality has motivated standardization groups such as JPEG and MPEG to launch activities aiming at developing compression standards for point clouds. Lossy compression usually introduces visual arti ...
Springer2024

Electromagnetic Radiation of Implantable Antennas

Mingxiang Gao

In the development of implantable bioelectronics, the establishment of efficient wireless RF links between implants and external nodes is crucial, providing substantial contributions to the advancement of medical diagnosis, therapies, and basic science. Im ...
EPFL2024

JPEG AIC-3 Dataset: Towards Defining the High Quality to Nearly Visually Lossless Quality Range

Touradj Ebrahimi, Michela Testolina, Davi Nachtigall Lazzarotto, Vlad Hosu

Visual data play a crucial role in modern society, and the rate at which images and videos are acquired, stored, and exchanged every day is rapidly increasing. Image compression is the key technology that enables storing and sharing of visual content in an ...
2023
Show more
Related concepts (42)
JPEG
JPEG (ˈdʒeɪpɛɡ , short for Joint Photographic Experts Group) is a commonly used method of lossy compression for s, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable tradeoff between storage size and . JPEG typically achieves 10:1 compression with little perceptible loss in image quality. Since its introduction in 1992, JPEG has been the most widely used standard in the world, and the most widely used digital , with several billion JPEG images produced every day as of 2015.
MP3
MP3 (formally MPEG-1 Audio Layer III or MPEG-2 Audio Layer III) is a coding format for digital audio developed largely by the Fraunhofer Society in Germany under the lead of Karlheinz Brandenburg, with support from other digital scientists in the United States and elsewhere. Originally defined as the third audio format of the MPEG-1 standard, it was retained and further extended — defining additional bit-rates and support for more audio channels — as the third audio format of the subsequent MPEG-2 standard.
Data compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information.
Show more
Related MOOCs (8)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.