MP3 (formally MPEG-1 Audio Layer III or MPEG-2 Audio Layer III) is a coding format for digital audio developed largely by the Fraunhofer Society in Germany under the lead of Karlheinz Brandenburg, with support from other digital scientists in the United States and elsewhere. Originally defined as the third audio format of the MPEG-1 standard, it was retained and further extended — defining additional bit-rates and support for more audio channels — as the third audio format of the subsequent MPEG-2 standard. A third version, known as MPEG-2.5 — extended to better support lower bit rates — is commonly implemented, but is not a recognized standard.
MP3 (or mp3) as a commonly designates files containing an elementary stream of MPEG-1 Audio or MPEG-2 Audio encoded data, without other complexities of the MP3 standard.
With regard to audio compression (the aspect of the standard most apparent to end-users, and for which it is best known), MP3 uses lossy data-compression to encode data using inexact approximations and the partial discarding of data. This allows a large reduction in file sizes when compared to uncompressed audio. The combination of small size and acceptable fidelity led to a boom in the distribution of music over the Internet in the mid- to late-1990s, with MP3 serving as an enabling technology at a time when bandwidth and storage were still at a premium. The MP3 format soon became associated with controversies surrounding copyright infringement, music piracy, and the file ripping/ services MP3.com and Napster, among others. With the advent of portable media players, a product category also including smartphones, MP3 support remains near-universal.
MP3 compression works by reducing (or approximating) the accuracy of certain components of sound that are considered (by psychoacoustic analysis) to be beyond the hearing capabilities of most humans. This method is commonly referred to as perceptual coding or as psychoacoustic modeling. The remaining audio information is then recorded in a space-efficient manner, using MDCT and FFT algorithms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data.
Advanced Audio Coding (AAC) is an audio coding standard for lossy digital audio compression. Designed to be the successor of the MP3 format, AAC generally achieves higher sound quality than MP3 encoders at the same bit rate. AAC has been standardized by ISO and IEC as part of the MPEG-2 and MPEG-4 specifications. Part of AAC, HE-AAC ("AAC+"), is part of MPEG-4 Audio and is adopted into digital radio standards DAB+ and Digital Radio Mondiale, and mobile television standards DVB-H and ATSC-M/H.
Lossless compression is a class of data compression that allows the original data to be perfectly reconstructed from the compressed data with no loss of information. Lossless compression is possible because most real-world data exhibits statistical redundancy. By contrast, lossy compression permits reconstruction only of an approximation of the original data, though usually with greatly improved compression rates (and therefore reduced media sizes).
Study of the essential components and implementation technologies of digital signal processing and communication systems from the theoretical, algorithmic and system implementation point of view.
The goal of this course is to introduce the engineering students state-of-the-art speech and audio coding techniques with an emphasis on the integration of knowledge about sound production and auditor
Covers the importance of human embryology for careers in biology, medicine, and health sciences, focusing on the development of key organs and anatomical structures.
Traffic congestion constitutes one of the most frequent, yet challenging, problems to address in the urban space. Caused by the concentration of population, whose mobility needs surpass the serving capacity of urban networks, congestion cannot be resolved ...
In this thesis, we explore techniques for addressing the communication bottleneck in data-parallel distributed training of deep learning models. We investigate algorithms that either reduce the size of the messages that are exchanged between workers, or th ...
EPFL2023
,
Electronic analog to digital converters (ADCs) are run-ning up against the well-known bit depth versus bandwidth trade off. Towards this end, radio frequency (RF) photonic-enhanced ADCs have been the subject of interest for some time. Optical frequency com ...