In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system (usually formulated within model theory) that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system. An axiomatic system is said to be consistent if it lacks contradiction. That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explosion). In an axiomatic system, an axiom is called independent if it cannot be proven or disproven from other axioms in the system. A system is called independent if each of its underlying axioms is independent. Unlike consistency, independence is not a necessary requirement for a functioning axiomatic system — though it is usually sought after to minimize the number of axioms in the system. An axiomatic system is called complete if for every statement, either itself or its negation is derivable from the system's axioms (equivalently, every statement is capable of being proven true or false). Beyond consistency, relative consistency is also the mark of a worthwhile axiom system. This describes the scenario where the undefined terms of a first axiom system are provided definitions from a second, such that the axioms of the first are theorems of the second. A good example is the relative consistency of absolute geometry with respect to the theory of the real number system. Lines and points are undefined terms (also called primitive notions) in absolute geometry, but assigned meanings in the theory of real numbers in a way that is consistent with both axiom systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (3)
PHYS-757: Axiomatic Quantum Field Theory
Presentation of Wightman's axiomatic framework to QFT as well as to the necessary mathematical objects to their understanding (Hilbert analysis, distributions, group representations,...). Proofs of
MATH-101(de): Analysis I (German)
Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Related lectures (15)
Principles of Quantum Physics
Covers the principles of quantum physics, focusing on tensor product spaces and entangled vectors.
Finite Element Methodology
Explores finite element methodology, covering geometric modeling, technical data, physical behavior assumptions, and mesh convergence studies.
Connections: Axiomatic DefinitionMOOC: Introduction to optimization on smooth manifolds: first order methods
Explores connections on manifolds, emphasizing the axiomatic definition and properties of derivatives in differentiating vector fields.
Show more
Related publications (29)
Related concepts (43)
Foundations of mathematics
Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Ernst Zermelo
Ernst Friedrich Ferdinand Zermelo (zɜrˈmɛloʊ, tsɛɐ̯ˈmeːlo; 27 July 1871 21 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem. Furthermore, his 1929 work on ranking chess players is the first description of a model for pairwise comparison that continues to have a profound impact on various applied fields utilizing this method.
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.