Summary
In ecology, r/K selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individual parental investment of r-strategists, or on a reduced quantity of offspring with a corresponding increased parental investment of K-strategists, varies widely, seemingly to promote success in particular environments. The concepts of quantity or quality offspring are sometimes referred to as "cheap" or "expensive", a comment on the expendable nature of the offspring and parental commitment made. The stability of the environment can predict if many expendable offspring are made or if fewer offspring of higher quality would lead to higher reproductive success. An unstable environment would encourage the parent to make many offspring, because the likelihood of all (or the majority) of them surviving to adulthood is slim. In contrast, more stable environments allow parents to confidently invest in one offspring because they are more likely to survive to adulthood. The terminology of r/K-selection was coined by the ecologists Robert MacArthur and E. O. Wilson in 1967 based on their work on island biogeography; although the concept of the evolution of life history strategies has a longer history (see e.g. plant strategies). The theory was popular in the 1970s and 1980s, when it was used as a heuristic device, but lost importance in the early 1990s, when it was criticized by several empirical studies. A life-history paradigm has replaced the r/K selection paradigm, but continues to incorporate its important themes as a subset of life history theory. Some scientists now prefer to use the terms fast versus slow life history as a replacement for, respectively, r versus K reproductive strategy. In r/K selection theory, selective pressures are hypothesised to drive evolution in one of two generalized directions: r- or K-selection.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (9)
Related concepts (4)
Population dynamics
Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems. Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, although over the last century the scope of mathematical biology has greatly expanded. The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the Malthusian growth model.
Evolutionary psychology
Evolutionary psychology is a theoretical approach in psychology that examines cognition and behavior from a modern evolutionary perspective. It seeks to identify human psychological adaptations with regards to the ancestral problems they evolved to solve. In this framework, psychological traits and mechanisms are either functional products of natural and sexual selection or non-adaptive by-products of other adaptive traits. Adaptationist thinking about physiological mechanisms, such as the heart, lungs, and the liver, is common in evolutionary biology.
Holocene extinction
The Holocene extinction, or Anthropocene extinction, is the ongoing extinction event during the Holocene epoch. The extinctions span numerous families of plants and animals, including mammals, birds, reptiles, amphibians, fish, invertebrates, and affecting not just terrestrial species but also large sectors of marine life. With widespread degradation of biodiversity hotspots, such as coral reefs and rainforests, as well as other areas, the vast majority of these extinctions are thought to be undocumented, as the species are undiscovered at the time of their extinction, which goes unrecorded.
Show more