A tweeter or treble speaker is a special type of loudspeaker (usually dome, inverse dome or horn-type) that is designed to produce high audio frequencies, typically deliver high frequencies up to 100 kHz. The name is derived from the high pitched sounds made by some birds (tweets), especially in contrast to the low woofs made by many dogs, after which low-frequency drivers are named (woofers).
Nearly all tweeters are electrodynamic drivers using a voice coil suspended within a fixed magnetic field. These designs operate by applying current from the output of an amplifier circuit to a coil of wire called a voice coil. The voice coil produces a varying magnetic field, which works against the fixed magnetic field of a permanent magnet around which the cylindrical voice coil is suspended, forcing the voice coil and the diaphragm attached to it to move. This mechanical movement resembles the waveform of the electronic signal supplied from the amplifier's output to the voice coil. Since the coil is attached to a diaphragm, the vibratory motion of the voice coil transmits to the diaphragm; the diaphragm in turn vibrates the air, thus creating air motions or audio waves, which is heard as high sounds.
Modern tweeters are typically different from older tweeters, which were usually small versions of woofers. As tweeter technology has advanced, different design applications have become popular. Many soft dome tweeter diaphragms are thermoformed from polyester film, or silk or polyester fabric that has been impregnated with a polymer resin. Hard dome tweeters are usually made of aluminium, aluminium-magnesium alloys, or titanium.
Tweeters are intended to convert an electrical signal into mechanical air movement with nothing added or subtracted, but the process is imperfect, and real-world tweeters involve tradeoffs. Among the challenges in tweeter design and manufacture are: providing adequate damping, to stop the dome's motion rapidly when the signal ends; ensuring suspension linearity, allowing high output at the low end of its frequency range; ensuring freedom from contact with the magnet assembly, keeping the dome centered as it moves; and providing adequate power handling without adding excessive mass.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An electrodynamic speaker driver, often called simply a speaker driver when the type is implicit, is an individual transducer that converts an electrical audio signal to sound waves. While the term is sometimes used interchangeably with the term speaker (loudspeaker), it is usually applied to specialized transducers which reproduce only a portion of the audible frequency range. For high fidelity reproduction of sound, multiple loudspeakers are often mounted in the same enclosure, each reproducing a different part of the audible frequency range.
A mid-range speaker is a loudspeaker driver that reproduces sound in the frequency range from 250 to 2000 Hz. Mid-range drivers are usually cone types or, less commonly, dome types, or compression horn drivers. The radiating diaphragm of a cone mid-range unit is a truncated cone, with a voice coil attached at the neck, along with the spider portion of the suspension, and with the cone surround at the wide end. Cone mid-range drivers typically resemble small woofers.
A woofer or bass speaker is a technical term for a loudspeaker driver designed to produce low frequency sounds, typically from 20 Hz up to 80 Hz. The name is from the onomatopoeic English word for a dog's bark, "woof" (in contrast to the name used for loudspeakers designed to reproduce high-frequency sounds, tweeter). The most common design for a woofer is the electrodynamic driver, which typically uses a stiff paper cone, driven by a voice coil surrounded by a magnetic field.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du
Explores the principles of electrodynamic transducers, focusing on their behavior as actuators and sensors, and methods to enhance transduction efficiency.
Explores electroacoustic absorbers as perfect anechoic terminations at low frequencies, presenting experimental evaluation and future perspectives.
Explores AC circuits analysis, complex impedance, phase shifts, and variable rotation.
Environmental noise, mostly related to human activities, has an immense impact on public health. The development of noise reduction technologies is paramount in addressing this problem. Because of practical and economic reasons, a compact, broadband, light ...
Unreinforced masonry buildings with flexible timber floors are amongst the most vulnerable building typologies for seismic loading. Though flexible diaphragms play a role in the seismic behaviour of unreinforced masonry buildings, the impact of the connect ...
This article presents the outcomes of a large project towards the investigation of the lateral performance of full-scale industrialized light-frame wooden diaphragms. 10 full-scale diaphragms of 3.6 m by 2.4 m were tested under in-plane lateral loading (mo ...